
SketchiMo: Sketch-based Motion Editing for Articulated Characters

Byungkuk Choi1∗ Roger Blanco i Ribera1∗ J. P. Lewis2 Yeongho Seol2 Seokpyo Hong1

Haegwang Eom1 Sunjin Jung1 Junyong Noh1

1KAIST 2Weta Digital

Figure 1: Left: SketchiMo offers different visualizations that accentuate different aspects of a motion: a joint path in world space (top left),
the relationship between a joint and its parent (top middle), between two coordinated body parts (top right), or the temporal character of the
movement (bottom). All the highlighted lines are editable via sketch input. Right: An edited dunk motion performed with SketchiMo compared
with the original motion. (Malcolm character courtesy of AnimSchool.com)

Abstract

We present SketchiMo, a novel approach for the expressive editing
of articulated character motion. SketchiMo solves for the motion
given a set of projective constraints that relate the sketch inputs to
the unknown 3D poses. We introduce the concept of sketch space,
a contextual geometric representation of sketch targets —motion
properties that are editable via sketch input— that enhances, right
on the viewport, different aspects of the motion. The combination
of the proposed sketch targets and space allows for seamless editing
of a wide range of properties, from simple joint trajectories to local
parent-child spatiotemporal relationships and more abstract prop-
erties such as coordinated motions. This is made possible by in-
terpreting the user’s input through a new sketch-based optimization
engine in a uniform way. In addition, our view-dependent sketch
space also serves the purpose of disambiguating the user inputs by
visualizing their range of effect and transparently defining the nec-
essary constraints to set the temporal boundaries for the optimiza-
tion.

Keywords: sketch-based interface, motion editing, character ani-
mation, articulated character motion

Concepts: •Human-centered computing→ Graphical user in-
terfaces; •Computing methodologies→Motion processing;

∗Both authors contributed equally to this work.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SIGGRAPH ’16 Technical Paper, July 24-28, 2016, Anaheim, CA
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925970

1 Introduction

Most visual artists rely on sketching, in one way or another, to de-
velop their ideas. Sketching is used in all phases of the creative
process, from building up shapes and exploring motion with rough
key poses to drawing storyboards. Sketch-based interfaces have
been widely used for various computer graphics applications be-
cause they allow for expressive, yet simple and intuitive, interac-
tion, in a way that is closer to cognitive processes [Annett et al.
2014]. Researchers in computer graphics have been keen on draw-
ing inspiration from more traditional creative processes. Major
developments in sketch-based research range from modeling and
rigging [Igarashi et al. 1999; Borosán et al. 2012; Levi and Gots-
man 2013; De Paoli and Singh 2015], sculpting and mesh edit-
ing [Nealen et al. 2005; Kho and Garland 2005; Takayama et al.
2013], to 3D painting [Schmid et al. 2011] even to the simulation
of rigid body objects [Popović et al. 2003; Thorne et al. 2004].

Sketch-based interfaces have found their way into production, a mi-
lieu dominated by the well-established WIMP1 paradigm and with
a certain tendency to resist the introduction of dramatic shifts into
long-held production practices. Existing WIMP interfaces include
a number of different editors such as the graph, outliner, and chan-
nel editors in Maya or MotionBuilder [Autodesk a]. These provide
exact, abstract, and complex control, but at the expense of a steep
learning curve. In addition, these editors separate the animation
process from the actual character, and a large portion of the ani-
mation process is spent simply switching between different editing
windows.

In contrast, sketch-based interfaces exploit the direct relationship
between the sketched input and the resulting effect in a WYSI-
WYG2 way. With the proven success of specialized sketch-based
software for modeling [Pixologic ; Autodesk b], sketch-based in-
terfaces have slowly seeped into more traditional CG software such

1window, icon, menu, pointer
2what you see is what you get

http://dx.doi.org/10.1145/2897824.2925970

as Maya and Blender [Blender Foundation], through their sculpt-
ing and texturing tools among others. On the flip side, sketch-based
interfaces also introduce their own challenges. Considering that ar-
ticulated figures have relatively high degrees of freedom (DoFs) to
control, and the difficulty of editing 3D elements with inputs on a
2D space, it is not surprising that fully sketch-based animation of
articulated characters remains a challenging and open problem.

Rather than creating an animation from scratch, existing captured
motion could be edited to impose a desired style or satisfy other
constraints. However, motion capture intrinsically lacks keyframes
or other high-level controls that would support such editing. As
a result, it is often easier to recapture a new motion than it is to
alter existing motion. Research has mainly focused on synthesiz-
ing new motion from available motion databases [Yoo et al. 2014]
and high-level indirect manipulation of dense motion data through
sparse spacetime constraints [Gleicher 1997; Gleicher 1998; Lee
and Shin 1999; Gleicher 2001; Kim et al. 2009; Ho et al. 2010]. All
in all, the lack of efficient and intuitive tools to directly manipulate
dense motion data has prevented motion capture from establishing
a foothold in stylistic animation pipelines, where keyframing and
rig manipulations remain the favored approach.

We propose SketchiMo, a sketching interface for the expressive
editing of articulated character motion. We solve this highly under-
constrained problem through the combination of two user interface
constructs, sketch targets and sketch spaces, together with an under-
lying optimization engine. Sketch targets (see Sec. 4) are objects
such as body lines or trajectories that are editable via sketch input.
Sketch spaces (see Sec. 5) are dynamic, view-dependent pictorial
representations of the animation that accentuate, right on the view-
port, different aspects of the motion. In the global sketch space the
animator sees snapshots of the character at different times (Fig. 1,
top left), and can alter either body lines or temporal joint path tar-
gets by sketching the new desired curves. In the local sketch space
the animator can observe and edit the trajectory of a joint relative to
its parent (Fig. 1, top middle). In the dynamic sketch space (Fig. 1,
bottom left), time is dilated, allowing fine control over the temporal
aspects of the motion.

Our novel optimization solves for the new 3D character motion
that is consistent with the projective constraints provided by the
artist’s sketched curves. The interface is both simple and fluid, yet
when combined with the underlying optimization it is also power-
ful —our system allows a variety of goals to be seamlessly handled,
ranging from forward kinematics (FK) and inverse kinematics (IK)
to abstract properties such as average paths and and inter-part con-
straints. The resulting motions can also be iteratively refined during
the sketching process.

Contributions SketchiMo extends previous research on sketch-
based editing [Guay et al. 2013; Guay et al. 2015b] to provide, for
the first time, entirely sketch-based motion editing of articulated
characters. All editing occurs directly on the viewport, using noth-
ing more than sketched strokes, with no need for auxiliary editors
(e.g. graph, channel, attribute editors). Direct and fine control is
provided: the artist directly sketches the desired shape of the motion
or pose, rather than working with sparse control handles. Multiple
aspects of the motion can be edited, including pose, trajectories,
timing, and relationships, using the same interface. Although the
resulting interface is particularly simple and intuitive, achieving this
simplicity required solving problems resulting from the ambiguities
of a 2D viewport and the many DoFs of a humanoid character. In
particular we solve the problem of selecting the intended target of
an edit, and show that the sketch space interface construct can re-
liably disambiguate the user’s inputs by visualizing their range of
effect and transparently defining the temporal boundaries for the
optimization.

2 Related Work

Early works in spacetime motion editing developed motion warp-
ing techniques allowing the user to smoothly modify given motions
while satisfying a set of specified constraints [Gleicher 1998; Lee
and Shin 1999]. Gleicher [2001] abstracted the global motion of
a character into a 2D motion path which in turn could be directly
manipulated through handles. Recently, higher level editing scenar-
ios such as multiple character synchronization [Kim et al. 2009] or
retargeting with spatial relationship considerations [Ho et al. 2010]
have been demonstrated. In these studies, only a sparse set of con-
straints is needed in order to achieve the desired high-level ma-
nipulations of the given data. More detailed modifications, such
as stylistic editing of the motion, would require a sensibly larger
number of constraints. We manage dense constraints for fine mo-
tion editing from input sketches with the selected sketch targets and
sketch space in a unified optimization framework.

Motion stylization Stylistic editing and synthesis of motion have
been approached by learning motion patterns from captured exam-
ple sequences [Brand and Hertzmann 2000; Grochow et al. 2004],
that have equivalent motions with different styles [Hsu et al. 2005],
or by decomposing motion into visually meaningful style compo-
nents [Shapiro et al. 2006]. Wang et al. [2006] designed a motion
filter based on the traditional animation techniques [Lasseter 1987].
By explicitly defining style, these methods restrict editing to their
specific definition of style. Instead, our work is inspired by Guay
et al. [2013] who provided an intuitive tool capable of achieving
stylistic expression, but whether the resulting edit reflects a confi-
dent stance or a laid back attitude is left up to the artist’s discretion.

Pose and timing manipulation Previous studies aiming for a
more direct motion control suggested separate pose and timing edit-
ing methods. For character posing, skeleton-based parameteriza-
tions are widespread in both graphics research and production. 2D
stick figures have been used to specify poses [Lin et al. 2010; Wei
and Chai 2011; Choi et al. 2012]. A further abstraction of the char-
acter skeleton, the line of action, proved capable of simple yet ex-
pressive pose manipulations [Guay et al. 2013; Öztireli et al. 2013].
Hahn et al. [2015] generalized the abstraction by letting the user
define the actual sketch-based abstraction.

Time warping techniques [Witkin and Popovic 1995; Rose et al.
1998; Hsu et al. 2007] allow for timing modification without af-
fecting poses to adapt the motion to meet new timing constraints.
Efforts to improve the manipulation of timing have included letting
the user “act” it directly by gesturing [Terra and Metoyer 2004],
augmenting the timeline with editable pose-icons and drag-and-
drop operations [Mukai and Kuriyama 2009], or visualizing tim-
ing directly on the viewport with a set of deformable spatial planes
along the motion [Yoo et al. 2015]. We visualize timing through
our sketch space: The thickness of lines and the dynamic space
help visualizing speed and timing.

Expressive motion editing Similar to our goal, a few studies
have focused on the editing of expressive aspects of character mo-
tion. Neff and Fiume [2003] developed a set of tools for ad-
justing succession, amplitude and extent of the motion. Coleman
et al. [2008] introduced the concept of staggered poses, allowing
densely-sampled motion to be represented by locating coordinated
movement features and modeling motion detail using splines and
displacement maps. Guay et al. [2015a] extended their work on the
line of action [Guay et al. 2013] by adding dynamics in order to in-
terpolate between successive lines of actions. Spacetime sketching
of character animation [Guay et al. 2015b] is perhaps the closest
work to ours. They bridged the gap between pose and time editing
by creating character motion from a single user sketch. Further re-
finement could be achieved with additional input. However, their

Figure 2: Overview: In a typical editing iteration in SketchiMo, the
user selects a target and a space, then proceeds to edit the motion
data through sketching.

technique focused on relatively simple characters without limbs.
We build upon the direction established by [Guay et al. 2015b] by
developing a small set of spacetime sketch abstractions that allow
natural stroke based editing of complex moving biped characters.

Keyframing Finally, despite being generally considered the stan-
dard approach in the industry, the keyframe approach to animation
is not without faults. There is a clear separation between spatial and
temporal manipulations which not only hinders the coordination of
pose evolution over time but also requires switching between tools,
viewports and editors. Pose manipulations are mainly performed
in the viewport by manipulating a control rig structure, skillfully
crafted by character TDs and mostly based on FK and IK, differ-
ent types of constraints, or set-driven key among others [McLaugh-
lin et al. 2011]. The usability and functionality of a rig is highly
dependent not only on the skill and time invested in the rig cre-
ation but also on the animation needs. For timing, the animator
is mainly directed towards the graph editor [Autodesk a; Coleman
et al. 2008] where the temporal curves for different rig parameters
are presented. Since these curves represent rig parameters, there
is a dissociation between what happens in the graph editor and the
viewport, i.e., in an arm FK type of rig, the trajectory of the wrist is
the accumulated rotations of all the joints in the chain. This results
in a back-and-forth switching between editors in order to achieve
the desired results. In contrast, our approach could be considered
as a dynamic rigging approach, where the sketch targets and sketch
space enable a simple and fast selection process. The user can vi-
sualize and edit different aspects of both pose and motion directly
on the viewport.

3 Overview

This work introduces SketchiMo, a framework that achieves motion
editing for articulated characters through a sketching-only inter-
face. The key challenge underlying SketchiMo, that is, controlling
a complex character with multiple DoFs using only 2D strokes, is
inherently a highly underdetermined problem. To address this chal-
lenge, we devised a set of novel interface constructs, sketch targets
and sketch spaces, where various editing intents can be naturally
accommodated, together with a sketch-based IK optimization that
combines the available information and constraints to produce the
desired 3D motion edit (Fig. 2).

Specifically, we provide a flexible target selection method to specify
a region of interest on the skeleton of the character. Through our
selection method, the user is presented with a set of sketch targets
ready to be edited via input strokes. Our selection method is easy
to use and greatly reduces ambiguities in a consistent way (Sec. 4).

Depending on the editing purpose, the user can select a sketch space
which provides different contextual visualizations of the selected
sketch targets. We provide three —global, local, and dynamic—
sketch spaces inspired by the animator’s workflow. Global and local
spaces are motivated by IK, FK manipulations, respectively, and the

dynamic space by the need to temporally disambiguate motions that
might spatially overlap (Sec. 5).

As a backend, our system adopts a hierarchical motion fitting tech-
nique with a new sketch-based IK solver. During the sketching pro-
cess, a single sketch target is determined automatically. Projective
constraints relating the sketch and the unknown 3D poses are then
built in accord with the target type and chosen space. The sketch-
based IK formulation integrates the different types of constraints
into the optimization in a uniform way (Sec. 6).

We demonstrate that our method can be easily extended with ad-
ditional types of targets to address more specific editing scenarios
such as editing coordinated motion (average path), motion synchro-
nization (relational line), or noise removal by brushing on the path
during the sketching process (Sec. 7).

4 Sketch Targets

Animation is often approached in a coarse-to-fine way. From an
initial rough motion, the animation is slowly crafted with incre-
mentally finer edits. There are different needs in the editing of the
motion at different iterations, which in turn are also influenced by
the specific type of animation in hand. Well designed rigs have a
priori redundant functionality, such as FK and IK controllers acting
on a same limb or different parenting switches for the IK end effec-
tor, in order to ease the keyframing process for different animation
scenarios. These overlapping controllers address radically different
editing needs. For instance, free movements such as dance hand
gestures might be simpler to animate with FK controllers while
catching a ball with the hand might be easier with IK controllers.

We approach this challenge from a dynamic rigging point of view
in the sense that by providing a flexible selection of editable mo-
tion properties, the user can locally and temporally rig the charac-
ter depending on the intended editing. By flexibly selecting sketch
targets, we provide control over what is being edited within the
character’s body and clearly delimit the effective range of the IK
behavior when solving the motion with a simple dragging motion.

In the following sections we first mathematically define the nature
of each sketch target and then describe the selection process.

4.1 Sketch Target Representation

A sketch target can be thought of as a line in the scene ready to
be sketched by a user. Formally, a sketch target is represented as
a 3D polyline S = {s0, . . . , sN−1} composed of N connected
vertices. We define two primary sketch targets —body lines and
joint paths— that can be extracted from a given motion.

A Body Line is defined as a sub-chain of joints in the character
skeleton structure, that is, a connected 1D joint chain that contains
a set of joint positions at time t

Sbl =
{
sblj (t) ∈ R3

∣∣∣ ∀j ∈ Jchain} . (1)

Multiple body lines can be manually defined on arbitrary parts of
the body. Similar to recent approaches [Öztireli et al. 2013; Guay
et al. 2013; Guay et al. 2015b], our definition of the body line is
concise, but provides the user with freedom to sketch specific body
parts by manually selecting them.

A Joint Path is a set of ordered positions

Sjp =
{
sjpj (t) ∈ R3

∣∣∣ 0 6 t < Nt
}
, (2)

which are uniformly sampled from the trajectory of joint j across
time t. Nt represents the total number of frames to be edited. The
joint path gives the user the ability to add expressive variations
within a specific time interval. This range is modified as the user
changes the current time or camera view. The polyline is rendered
with a varying thickness matching the magnitude of the velocity
of the joint. This visual feedback can be exploited to edit certain
timing aspects such as the ease-in or ease-out of the motion (see
Sec. 7.2).

Without loss of generality, we will notate a set of sketch targets as
follows:

S = {Si | 0 6 i < Ns} , (3)

where Ns is the total number of selected sketch targets. Note that
Si can be either Sbl or Sjp. We also denote sij(t) as a general target
position, specified in the ith sketch target on joint j at time t. The
exact positions of a sketch target depend on the current choice of
sketch space which will be explained in Sec. 5.

4.2 Sketch Target Selection

Selecting the proper sketch targets is an important step as they re-
flect user’s editing intention, and may vary depending on a given
character and its motion. We design an intuitive and easy-to-use
selection method relying on the following criteria:

• Flexibility Any arbitrary body line (joint sub-chain) from
an arbitrary character that has a tree-structured skeleton con-
figuration can be selected as a sketch target.

• Usability User interaction must be suitable for pen inputs.
We consider a dragging motion rather than a picking motion.
The system determines the closest joints and visualizes the
current selection in real-time.

• Consistency All selections are made by specifying two end
joints with a dragging motion. Every selection produces a
body line and its associated joint path targets.

To satisfy all these criteria, we first let the user select two joints
with a dragging motion. The shortest path in the skeleton hierarchy
between both joints is then used as a single body line target. Joint
path targets are selected by considering the two extreme joints on
the hierarchy of the selected body line. Specifically, we produce a
joint path only if an extreme joint is a leaf joint. This means that,
depending on the selected body line, at most two joint path targets
will be offered to the user for editing (Fig. 3).

Figure 3: Sketch target selection examples. Left: A single body line
and a joint path. Right: A single body line and two joint paths, note
the red and the blue joints are both leaf joints in the selected joint
chain, leading to the creation of two joint paths.

Finally, we put a positional constraint on the joint in the top-most
hierarchy of the selected body line. With this, sketching will only
affect the region highlighted by the selected sketch targets. By se-
lecting a single joint and its immediate parent, an FK type of con-

Figure 4: Global and local spaces. Top: Motion of the left wrist
in the global space (left) and in the local space w.r.t. the shoulder
(right). The local space reveals a simple backward swing of the arm
followed by a larger forward swing. In this case, the local space
permits a more intelligible display of the extent and orientation of
the arching motion. Bottom: An edited motion (left) with a single
stroke on the local space (right).

trol can be attained, whereas dragging the selection further down
the line of the hierarchy allows IK behavior.

5 Sketch Space

In this section, we define a core concept, the sketch space —a ge-
ometric representation of sketch targets in 3D space. This space is
dynamic and view-dependent in the sense that it is designed to be
switched or transformed, and automatically delimits the temporal
editing bounds as the user navigates the 3D viewport.

5.1 Sketch Space Transformation

In order to suit the user’s specific editing intentions effectively, the
transformed spaces serve to enhance or visualize directly on the
viewport different aspects of the motion that might be otherwise
hidden with the traditional representation of joint paths. We pro-
pose three different spaces: global, local, and dynamic.

Global space The global space is the default sketch space. It cor-
responds to the 3D world space of the application. In the global
space, we represent the evolution of the different targets in time
and space. In this sense, sketch targets in the global space coincide
exactly with the motion. Because of this intuitiveness, the use of
global space has been the standard representation in conventional
motion editing process.

Specifically, let M(t) = (p0(t),q0(t), . . . ,qNj−1(t)) denote a
given motion, where p0(t) ∈ R3 and qi(t) ∈ S3, (0 6 i < Nj)
describe the translational motion of the root segment and the rota-
tional motion of the ith joint at time t, respectively, and Nj is the
number of joints. Then, we can compute a global point on a sketch
target from a joint j at time t as follows:

sj(t) =

{(
pb0 + p0(t),qb0q0(t)

)
⊗
(
pb1,q

b
1q1(t)

)
⊗ · · · ⊗

(
pbj−1,q

b
j−1qj−1(t)

)}
pbj .

(4)

Here, (pA,qA) ⊗ (pB ,qB) = (qApBq
−1
A + pA,qAqB) [Lee

2008], and the superscript b denotes the value from the initial body

configuration which is constant. For notational simplicity, we as-
sume that joint indices in a chain from a selected joint j to the root
joint are arranged in a descending order.

Local space The trajectory of a joint in the global space is the
cumulative composition of the different motions of the joints down
the line of the character’s skeletal hierarchy. While in general it is
very intuitive to manipulate the motion in this way, it is sometimes
necessary to edit it with respect to a certain part of the body (Fig. 4).

Our target selection allows to define arbitrary parental relations.
Local space changes the visualization by fixing the parent trans-
formation across time, with the result that in the effect of the joints
higher in the hierarchy is removed from the final visualization.

We define sj→k(t) as a point in the local sketch space such that the
point lies in a local path of the selected joint j with respect to the
frame joint k at time t. Specifically,

sj→k(t) =

Mk(tc)
{(

pbk,q
b
kqk(t)

)
⊗ · · · ⊗

(
pbj−1,q

b
j−1qj−1(t)

)}
pbj ,

(5)

where tc is the current time chosen by a user, and

Mk(tc) =(
pb0 + p(tc),q

b
0q0(tc)

)
⊗ · · · ⊗

(
pbk−1,q

b
k−1qk−1(tc)

) (6)

is the fixed transformation matrix of joint k with respect to the root
joint at time tc. Note that a fixed transformation matrix Mk(tc)
does not change over time t while computing sketch target points.

Dynamic space Motion is represented in the screen as a 2D slice
of 4D data, that is, 3D poses evolving in time. Changing the
point of view alleviates the lack of a spatial dimension, but cannot
cope with the visualization of time. The representation of motion
through body lines or trajectories will suffer from spatial superposi-
tion of poses within a certain time interval, complicating the editing
of the motion. In the global space, for motions with large displace-
ments such as running, the superposition may not be a big problem
but it would certainly arise for slow or close to stationary motions.
Furthermore, with the introduction of the local space, there are in-
creasing chances that a body part appears static with respect to the
defined parent.

To address this we warp the sketch targets by adding a previously
designed warping vector as follows:

swarpedj (t) = sj(t) + αw(t), (7)

where α is a user parameter that determines a degree of warping.

Considering the selected sketch target and the contextual state of
the motion, we can design warping vectors in order to explicitly vi-
sualize time on the joint path (Fig. 5). We utilize the axis orthogonal
to the viewing direction xcamera to evenly distribute the frames so
that the visualized spatial gap between frames corresponds propor-
tionally to the temporal gap between those same frames:

w(t) = − ((s0(t)− s0(tc)) · n)n︸ ︷︷ ︸
warp towards a virtual plane

+ (t− tc)xcamera︸ ︷︷ ︸
warp along horizontal axis

, (8)

where n is the normal vector of the plane orthogonal to the viewing
direction (Fig. 6).

Figure 5: Dynamic space. Top: Motion with a significant pose
overlap (left). The root joint path in the global space (middle).
Increasing the warping factor declutters the trajectory (right). Bot-
tom: The warping factor can be increased until the overlap is com-
pletely removed (yellow) in order to simplify the editing process
(red).

Figure 6: Dynamic warping vector.

5.2 View-dependent Selection of Editing Boundaries

Another purpose of sketch space is to disambiguate the sketch in-
puts by visualizing the range of effects and setting the constraints
for the optimization, transparently to the user. Our design choices
mainly stem from observation of the workflow of a professional an-
imator. In the traditional process of animating, the animator often
begins by choosing a central keyframe, an important instant in the
motion where the artist might want to add more dramatic pose vari-
ations. Next, they fix a viewpoint and delimit a certain time domain
to edit.

We observed that these choices of the time range and the camera
viewpoint are influenced by the editing intention. The choice of
viewpoint helps the artist focus on the editing in the time range
where the motion is visible within screen space. For example, a
close-up view on a specific body part reflects an intention to re-
fine motion details. Navigating away reveals global behaviors of
the character. Because the screen shows a 2D projection of the
actual 3D space, the choice of viewpoint signals the intention of
modifying motion properties that are generally tangent to the view-
ing plane. Previous research has exploited analogous assumptions.
For example, sketch-based modeling paradigms often assume that
the user will rotate the model so that the silhouette best reflects

Figure 7: View-dependent editing boundary. As the user navigates
far from the character the editable motion range increases.

the region they intend to edit [Igarashi et al. 1999; Nealen et al.
2005]. Thus, given a central current frame, the sketch space is auto-
matically equipped with a set of proper constraints for the selected
sketch targets as the user navigates the viewport.

We choose the editing range for the optimization by considering
the distance between the character and the camera (Fig. 7). The
rationale behind this criterion is that a small number of frames are
selected when a viewpoint is close to the target path, while more
frames are added as the camera moves away. Specifically, a set of
bounded time frames T b in a specific camera view at the current
time tc is chosen as follows:

T b = T− ∪ T+ = {tc −m, . . . , tc, . . . , tc + n}, (9)

where

T− =

{
tc −m, . . . , tc

∣∣∣∣∣m < f (s̄(tc)) ,

tc∑
t=tc−m

l(t) < η

}
,

T+ =

{
tc, . . . , tc + n

∣∣∣∣∣ n < f (s̄(tc)) ,

tc+n∑
t=tc

l(t) < η

}
. (10)

Here, m and n represent the number of preceding and succeeding
frames, respectively, s̄(t) ∈ R3 is the centroid of a character pose
at time t, and f(x) computes the number of bounding frames pro-
portional to the depth of a point x. l(t) = ‖proj(s̄(t)− s̄(t− 1))‖
is the length between two consecutive centroids in screen space and
is used to clip the sketch space within a user threshold value (2η).
Note that the editing boundary changes upon camera motion, as
f(x) and l(t) are view-dependent.

6 Sketch-based Motion Editing

We next discuss how a given motion can be edited from sketches.
After a user selects sketch targets, an editing time tc and the current
camera view, the 2D stroke the user draws is used to constrain one
of the sketch targets. We then fit a given motion to the sketch in the
bounded time region. The edited motion is immediately shown to
the user, and then refined by simply adding more strokes.

Our objective is to position the selected sketch target close to
the sketched stroke while preserving the original motion as much
as possible. Accomplishing this requires first selecting the best
matched sketch target among multiple targets, and then optimizing
the motion with a set of constraints. As our objective incorporates
optimization of the motion within different types of sketch space,
we design a constraint function that can cope with each space in a
uniform way.

6.1 Selecting a Single Sketch Target

As multiple targets are usually present in the sketch space, the spe-
cific target being sketched by the user should be first determined.
We consider which sketch targets are most visible in the current
view. This can be done automatically whenever the user changes
the camera view by taking advantage of the sketch space described
in Sec. 5. Consequently, the user can simply sketch a stroke over the
desired target out of multiple targets without needing to separately
select it. The sketch target is selected by minimizing

S∗ = arg min
Si∈S

E(Si, C
s), (11)

where

E(Si, C
s) = min(‖S̄i − C̄s‖, ‖S̄i − C̄sreverse‖),

S̄i =

 proj(Si)(p0)
...

proj(Si)(pr−1)

 , C̄s =

 Cs(p0)
...

Cs(pr−1)

 .
S̄i and C̄s are the column vectors in Rr×2 concatenating r rep-
resentative points of the ith projected sketch target and a user
sketch stroke, respectively. We simply use five evenly spaced sam-
ples on S̄i and C̄s after parameterizing both over [0, 1] (p0 =
0.0, . . . , pr−1 = 1.0). C̄sreverse is the vector containing the same
points as C̄s in a reverse order. We take the minimum value after
comparing both directions of the sketch stroke to the sketch targets
to account for the freedom of sketching direction. When sketch
targets have similar cost, the closest to the camera is selected.

Correspondence After the single sketch target is chosen by
Eq. (11), exact correspondences between the sketch target S∗ and
the user sketch Cs need to be identified. The corresponding ver-
tex locations {csi} on this sketch stroke result in constraints on the
sketch target {s∗i } as follows: First, {s∗i } are transformed to the
screen space, i.e., the first two components contain screen space co-
ordinates, while the third component contains the depth value {di}.
Then, both curves are parameterized over [0, 1] based on the edge
lengths of the target polylines. This induces a mapping from {s∗i }
to {csi}, defining new screen space target constraints {(csi , di)} that
are directly passed to the solver. Note that correspondences are
computed in the same way for each sketch target, but the optimiza-
tion is adapted for each type. In case lengths of the sketch stroke
and the sketch target are different, bone lengths are preserved by
the IK solver, and different stroke lengths result in spatial warps of
the joint path. We will describe details in the following sections.

6.2 Optimization Framework

Given the original motion M0 and a set of constraints C, we for-
mulate an optimization problem such that a target motion M =
M0⊕δ satisfies the sketch constraints {(csi , di)} in C by a smooth
displacement map δ. To solve this problem in our context, we adopt
the hierarchical motion fitting technique of [Lee and Shin 1999].
The final motion M can be derived by adding a series of succes-
sively finer sub-maps δ1, . . . , δh which lead to the corresponding
series of incrementally refined motions,M1, . . . ,Mh as follows:

Mh = (· · · (· · · ((M0 ⊕ δ1)⊕ δ2) · · · ⊕ δi) · · · ⊕ δh) . (12)

Here, δi ∈ R3Nj+3 (1 6 i 6 h), is represented by an array of
cubic B-spline curves.

The displacement of the joint at a particular time t is interpolated
by the corresponding component curve of the displacement map
and thus smoothly propagated to the neighboring frames. At each

constrained time t, we utilize a sketch-based IK solver (Sec. 6.3)
with a given set of constraints C(t) ∈ C that includes projective
constraints imposed by the sketch.

Additionally to the constraints directly imposed by the sketch,
we pre-compute all the environmental contact constraints us-
ing [Le Callennec and Boulic 2006], and then transform them
accordingly to the chosen sketch space. In addition, accord-
ing to the selection of sketch targets, additional positional con-
straints (Sec. 4.2) are imposed to prevent inexact movements in un-
selected body parts. We assume that a specific constraint is defined
at a particular instance of time. Constraints on joint paths are con-
sidered as a variational constraint [Gleicher 1997] that holds over
an interval of motion frames, which is realized by a sequence of
constraints for the time interval. For more details on hierarchical
motion fitting, please refer to Lee and Shin’s work [1999].

Detail control One benefit of the hierarchical displacement map-
ping technique is that the edited detail can be easily controlled by
providing a displacement level h as a user parameter. We map the
hierarchy level h in Eq. (12) to the type of the sketching brush that
provides either coarse (h = 1) or finer control of the result.

6.3 Sketch-based Inverse Kinematics

Our sketch-based IK solver recovers the pose by minimizing an
objective function that is a weighted combination of four terms.
The first term EP preserves the original pose, the second term
ES pushes the joint in the selected sketch target towards the cor-
responding point on the sketch, the third term ED preserves the
original depth of the joint in the selected sketch target, and the
fourth term EC enforces constraints such as joint limitations and
environmental contacts,

arg min
x
ωPEP (x) + ωSES(x) + ωDED(x) + ωCEC(x) (13)

where the weights ω determine the relative importance of each
term, and x ∈ R3Nj+3 represents the degrees of freedom of the
skeleton. We can parameterize x from Eq. (4) using the displace-
ment δ = (u,v0, . . . ,vNj−1) from a given reference configura-
tion (pb0,q

b
0, . . . ,q

b
Nj−1) as follows:

p0 = pb0 + u

qi = qbi exp(vi) (0 6 i < Nj).

Penalizing large displacement (EP) We preserve the original
pose by penalizing a large displacement, as commonly practiced
in previous research [Gleicher 1997; Gleicher 1998; Lee and Shin
1999],

EP (x) =

Nj∑
i

αi‖xi‖2, (14)

where αi is used to control the rigidity of an individual joint.

Sketch constraints (ES) A single sketch stroke automatically
produces constraints for a single sketch target. For body lines we
use static constraints

EstaticS (x) =
∑

csi∈C
S

‖csi − proj(sj(s)(x))‖2, (15)

where CS is a set of constraints from the sketch, and sj(s)(x) is
a point in the sketch target of joint j that corresponds to a sketch
constraint csi .

For joint paths we place constraints at each frame over the edit-
ing range of time to describe the continuous relationship between

the joint path and the given input. Considering the choice of sketch
space —either global, local, or dynamic—, we set a variational con-
straint on arbitrary time t as follows:

EvS(xt) = ‖cs(t)− proj(Mk(tc)sj(s)→k(xt) + w(t))‖2, (16)

where cs(t) is a sketch constraint at time t, Mk(tc) is a fixed trans-
formation of joint k at current time tc (Eq. (6)), sj(s)→k(xt) is a
point of joint j in local space with respect to joint k (Eq. (5)), and
w(t) is a warping vector at time t (Eq. (8)).

When t = tc, our local space representation Mk(tc)sj(s)→k(xt)
becomes equivalent to sj(s)(xt). That is, Mk(tc)sj(s)→k(xtc) ≡
sj(s)(xt) for any arbitrary joint k. The warping vector is always 0
for current time tc by definition (Eq. (8)). Therefore, we can safely
use Eq. (16) for the static case.

In terms of sketch space, frame joint k changes upon switching be-
tween global and local spaces. When k = 0, M0(t)sj(s)→0(xt)
becomes equivalent to sj(s)(xt) for any arbitrary time t, which
represents a point in global sketch space. Therefore, we can use
a uniform constraint function both for the static and the variational
sketching, and also for every sketch space as follows:

ES(xt) =
∑
csi∈C

S

‖csi (t)− proj(Mk(tc)sj(s)→k(xt) + w(t))‖2.

(17)
Note that the summation works only for the static case (body line)
as a joint path target always has a single target joint for sketching.

Depth constraints (ED) As it is hard to control depth by sketch-
ing, we simply keep the original depth during the sketching process
by enforcing a depth constraint as follows:

ED(xt) =
∑

di∈CD

‖di(t)− depth(Mk(tc)sj(s)→k(xt) + w(t))‖2,

(18)
whereCD is a set of depth constraints, and d(t) is a depth constraint
at time t. The same principle holds for a depth constraint function
in terms of various sketch spaces as in the case of sketch constraints
(Eq. (17)).

General constraints (EC) For the constraints not imposed by the
sketch we use

EC(xt) =
∑

cei∈C
E

‖cei − (rj(xt) + w(t))‖2

+
∑

(θLi ,θ
U
i)∈CL

‖g(θLi , θ
U
i , ql(xt))‖

2
, (19)

where CE and CL are a set of constraints computed from the envi-
ronment contacts and joint limits. rj(x) and ql(x) are the position
and the angle of joint j and l, respectively. g(·) is a modified ver-
sion of the smooth max function that penalizes the range outside
(θL, θU) [Tassa et al. 2012].

IK optimization To obtain IK solutions for every constrained
time frames at interactive rates, we analytically evaluate the Jaco-
bian terms of the objective function in Eq. (13). As our optimiza-
tion problem is nonlinear due to the projective division in Eq. (17),
we opt for the quasi-Newton L-BFGS [Nocedal and Wright 2006;
Johnson 2010] method.

7 Extensions

In this section, we demonstrate how the functionality of SketchiMo
can be easily extended to address various editing scenarios by build-
ing directly on top of the core functionality detailed in the previous

sections. We first extend sketch targets to include an abstract visu-
alization of the motion, and then explain how the sketch space and
optimization can be modified to achieve the different motion solu-
tions for relative re-timing and noise removal. These modifications
are incorporated into the SketchiMo framework and are presented
to the user as additional sketch targets and brushes.

7.1 Abstract Sketch Targets

We extend the definition of the body line and the joint path to ob-
tain a meaningful abstraction of the given motion. Motion abstrac-
tion has proven useful for high-level manipulation or the extraction
of motion features [Assa et al. 2005]. The motion path [Gleicher
2001] is a well known abstraction of the motion that can be ob-
tained by projecting the translational motion of a character onto the
ground. We target our abstraction towards the manipulation of co-
ordinated motion.

Generally, we consider an abstract target as any polyline derived
from motion properties that does not directly lie on the body and
that is not coincident with a joint trajectory. We explicitly define
two such abstract targets, the average path and the relational line.
Note that the motion path could also be easily incorporated into the
collection of abstract targets available in our framework.

An Average Path represents the common trajectory of selected
joints. By editing the average path, several joint trajectories can
be edited at once while preserving the properties of the original
separate joint paths. The average path is defined as follows:

Sap =

sap(t) ∈ R3

∣∣∣∣∣∣ sap(t) = 1
N(Jsel)

∑
j∈Jsel

sjpj (t)

 , (20)

where Jsel represents a set of joints currently selected, N(Jsel) is
the number of the selected joints, and sap(t) is the average point at
time t, respectively.

A constraint function for the average path includes an offset vector
oj(t) = sap(t)− sjpj (t) as follows:

Eap(xt) =
∑
j∈Jsel

(
‖cs(t)− proj(sj(xt) + w(t) + oj(t))‖2

+ ‖d(t)− depth(sj(xt) + w(t) + oj(t))‖2
)
. (21)

The solution to the average path can be obtained from the mini-
mization of Eq. (13) by replacing ES and ED with Eq. (21).

A Relational Line visualizes the relationship between selected
end-effectors by connecting them through space with a linear poly-
line:

Srl =
{
srlj (t) ∈ R3

∣∣∣ ∀j ∈ Jsel} . (22)

Unlike a body line (Eq. (1)), the selected joints Jsel in a relational
line do not necessarily lie on a joint chain Jchain. Eq. (17) and (18)
are directly used to constrain the optimization of the relational line.

7.2 Re-timing

A significant amount of time is spent adjusting the timing of an
animation. We aim to exploit the visual feedback on speed given by
the joint paths to devise a re-timing tool that operates by sketching
directly on the joint path. By brushing over a certain section of
the path, the user can speed up, slow down, or linearize time (i.e.
evenly distribute frames, see Fig. 9).

Figure 8: Abstract targets. The average path (light green) sweeps
from the center of the relational line (dark green) linking the se-
lected joints. The edited motion (bottom) was obtained from the
highlighted edits (red) shown over the original motion (top).

Figure 9: Re-timing. Left: original motion. Center: user strokes
to speed up (red) and slow down (blue) the motion. Right: edited
path.

A change of the speed in the entire path can be obtained by re-
parameterizing the joint path as follows:

arg min
P

∑
pi∈P

‖σi −∆(pi)‖2 +
∑

ps∈PS

‖wσs −∆(ps)‖2

s.t. p0 = 0.0, pNp−1 = 1.0, PS ⊂ P. (23)

PS and P are a set of ordered parameter values of the sketched
and the bounded region of the selected joint path. σ is the original
distance between two parameters, measured along the path, and w
is the weight value given by the user sketch inputs, respectively. A
value w < 1.0 will slow down the brushed motion, while setting
w > 1.0 will increase the speed in the area. ∆(pi) = pi − pi−1 is
simply the finite difference between two parameters.

The new positions s(p∗i) ∈ R3 obtained from the 1D Laplacian in
the path parameter space are used as soft constraints for the op-
timization. As the positions of the constraints are computed by
re-parameterizing the original path, the shape of the path does not
change, only the timing is altered. It is sometimes useful to linearize
the motion by evenly redistributing frames over the trajectory. This
is easily implemented by directly specifying the uniform distribu-
tion over the sketched region as constraints for the optimization.

An important factor to consider is the careful selection of the tem-
poral boundaries for the optimization. The re-timing optimization

will produce a compensation effect where speeding up a region will
slow down the remaining parts. If correct boundaries are not care-
fully chosen, the re-timing can introduce visible timing artifacts.
We extend the contextual boundary selection of the sketch space
by replacing the view-dependent boundary selection in Eq. (9) with
the consideration of the speed of the selected sketch target:

T−sp = {tc −m, . . . , tc | |ṡ(tc −m)| < ν} ,
T+
sp = {tc, . . . , tc + n | |ṡ(tc + n)| < ν} , (24)

where |ṡ(t)| is the speed of the selected joint path at time t, and
ν is a user parameter bounding the maximum stopping speed of
the path. Starting from the current frame, the sketch space will
search for velocity inflection points on the trajectory to delimit the
editing range. This has the additional benefit of fixing the sketch
space within a certain time range. Although we present a visual
speed cue through the joint path thickness, checking the animation
is necessary. The user can play the animation back and forth while
having visual cues for the speed and spatial trajectory.

7.3 Noise Removal

A similar technique can be utilized to remove noise from the motion
data. Here, instead of a 1D Laplacian on the parameter space, we
apply the Laplacian to the 3D path positions L(s(t)) = s(t) −
1
2
(s(t− 1) + s(t+ 1)) to smooth out the path:

arg min
S

∑
s(t)∈S

‖σ(t)− L(s(t))‖2 +
∑

sr∈SR

‖s′r − sr‖
2

+
∑

ss∈SS

‖wL(ss)‖2, s.t. S = SS ∪ SR, (25)

where SS and SR denote the set of ordered path positions closest to
the given sketch and the remaining region of the selected joint path
S, respectively. σ is the original Laplacian coordinate of the points
in the selected sketch target. The original joint path positions s′r are
used to constrain points outside the sketched region. Control over
smoothness can be achieved with the user defined scaling factor
w. SketchiMo visualizes the smoothing power by proportionally
varying the smoothing brush size. The edited motion is solved by
constraining the optimization with the smoothed positions si ∈ R3.

8 Results

8.1 Experimental Setup

Implementation details We prototyped SketchiMo as a stand-
alone application using Qt 5.5 for the graphical user interface,
and GLSL for the visualization. For the sketching inputs, we of-
fered three different brushes, the line brush to specify new posi-
tions for the sketch targets, the re-timing brush to speed up, slow
down, or linearize the velocities, and the smoothing brush to re-
move unwanted details. For the line and smoothing brushes, the
brush size regulates the editing detail (Eq. (12)) and smoothness
power (Eq. (25)), respectively. The re-timing brush is visualized
with the help of an additional reference circle. A relatively big-
ger, matching, or smaller size will switch between speeding up,
evenly spreading, or slowing down behaviors. We also exposed
the choice of sketch space, and its tuning parameters, i.e., the pro-
jection (Eq. (10)) and the speed threshold (Eq. (24)), the dynamic
warping factor (Eq. (7)), and the maximum number of frames to be
bounded within the sketch space. For the IK optimization, we fixed
ωP = 0.01, ωS = 100, ωD = 1, ωC = 1 from Eq. (13).

Example data We experimented with three different characters.
The Malcom (Fig. 1) and Gump (Fig. 11) models share the same

skeletal structure consisting of 65 joints and 115 DoFs, but have
different proportions. The Pink Panther (Fig. 13) has a different
structure including a tail and consists of 28 joints and 57 DoFs. We
only allow joint rotations of the skeleton with the exception of the
root that has three translational DoFs. To reduce a total number
of DoFs, the neck and the clavicles are constrained to two DoFs,
and the knee, the elbow, and the finger joints are constrained to a
single DoF. We manually specified joint angle limits. The motion
data used in our experiments were captured from a Vicon optical
system, or obtained from pre-existing motion databases [Autodesk
a]. All of the motion data clips were retargeted to the characters
with a sample rate of 60 fps.

8.2 Experimental Results and Discussion

We present six edited motion sequences created by five users (in-
cluding two authors) with different skill levels ranging from novice
to five years experience in character rigging. All the results pre-
sented were made entirely via sketch inputs. We started the ex-
periments by presenting the user with a motion clip and an editing
goal for the sequence, then, we let the user sketch all the necessary
strokes until the goal was accomplished.

Use-case examples The combination of fast and flexible sketch
target selections and the choice of sketch space support editing of
various types of movements. The role of the sketch space is illus-
trated in Fig. 4 and 5. Fig. 4 shows how a complex global motion
becomes simple arcs in the local space. With a single stroke, the
forward and backward swing of the left arm is made wider. By
drawing the ending of the swing closer to body, the hand is brought

Figure 10: “Taekwondo” motion editing to hit a given target (red
ball). The root motion is first edited in the dynamic space (left).
Body line edits are then added on the kick pose (right).

Figure 11: Correcting retargeting artifacts on the “Golf” motion.
Left: Pose edits to fix interpenetrations. To avoid visual clutter only
the user input on the spine body line is shown (orange). The neck
was also edited in another view. Right: The hand contact is fixed
(red), the trajectory is then modified into a clean arc (orange).

Figure 12: Example edits on the “Ballet” motion. Left: Correction of the interpenetration. Center left: Users were asked to uncross the
hands during a portion of the motion. Center right: The expressiveness of the motion is enhanced by specifying a body line and modifying
the ankle joint path. Right: In addition to exaggerating the pose, a nodding motion is added to the head.

Figure 13: Sketch inputs during the editing of the “Dunk” motion. Top, from left to right: A pose edit using a relational line, exaggerating
motion by editing the root joint path, enhancing the expressiveness of the dunk pose by sketching on a head to foot body line. Bottom, from
left to right: Coordinated hand motion is jointly edited with an average path, multiple limb body lines to specify a pose, re-timing edits to
exaggerate the dunking motion. (Pink Panther character courtesy of Karim Kashefi)

closer to the chest. Ensuring smooth arcing motions and exaggerat-
ing the anticipation and follow-through of the motions is one of the
main benefits of this space. Fig. 5 presents how the dynamic space
stretches the trajectory along the horizontal axis, thereby disam-
biguating the spatially overlapping motion and allowing accurate
visualization and editing of vertical movement. In Fig. 5 bottom,
all the crouching motions are exaggerated with a single stroke in
the dynamic space. Fig. 8 and 11 demonstrate the flexibility of the
abstract targets for the editing of coordinated motion. In Fig. 8,
with four simple sketches, a crossing hands motion is enhanced by
increasing the anticipation and follow-through, as well as ensuring
a clean arcing trajectory. Fig. 9 illustrates how a few strokes are
enough to enhance the easing in and out of the arm swing using the
re-timing brush.

Practical motion editing scenarios In Fig. 10 (“Taekwondo”),
the user was given a target contact position (red ball) to kick. The
target is placed out of the reach of the original motion, requiring not
just the editing of the kicking pose but also the jump. As the jump is
mostly done in place, the root joint path was edited in the dynamic
space in order to exaggerate the anticipation, height and landing of
the jump, portraying a stronger effort. Finally, the body lines of the
leg and head were edited in order to hit the target and correct the
gaze direction, respectively. Fig. 11 (“Golf”) demonstrates a com-
mon editing situation arising when retargeting motion to characters
with significantly different proportions. We asked users to fix the
motion artifacts resulting from the retargeting —mostly interpene-
trations and the lack of hand contacts (the character is supposed to
be grabbing a golf club). With a few edits the motion is correctly
adapted to the new character. Fig. 13 (“Dunk”) and 12 (“Ballet”)
represent typical motion editing scenarios. These particular exam-
ples involve many types of movements, including running, jumping

and dribbling a basketball in a single clip. The users were asked to
fix motion interpenetrations, achieve certain given poses, and over-
all to increase expressiveness of the motion. Fig. 13 illustrates a
few edits on the “Dunk” motion. To edit the coordinated motion
of the hands grabbing the ball, the relational line was used to first
exaggerate two extreme poses by displacing the hands towards the
side. Then the average path was edited to avoid the interpenetra-
tion generated after the previous mentioned edit. It was also used
to exaggerate the swinging to the side. The running motion was ex-
aggerated with a simple stroke on the root path. A few body lines
were sufficient to increase the drama of the poses.

Motion Frames Spaces
Num. of Strokes

Time
bl jp at r/s

Martial Arts 283 g/d 2 3 2 3 2 m. 30 s.
Parkour 600 g/d 2 1 0 0 3 m. 20 s.

Taekwondo 690 g/d 5 3 0 2 4 m. 30 s.
Golf 636 g 6 2 10 2 7 m. 40 s.
Dunk 364 g/l/d 12 5 3 2 9 m. 50 s.
Ballet 1320 g/l/d 10 8 3 0 6 m. 30 s.

Table 1: Interaction breakdown of a single novice user: sketch
spaces (global, local, dynamic), total strokes (body line, joint path,
abstract target, re-timing/smoothing), and editing time.

Table 1 presents a breakdown of the user interactions over the dif-
ferent editing tasks. We instrumented Sketchimo to record the to-
tal number of given strokes, as well as how they were distributed
within the different types of sketch targets and spaces. The total
number of time spent in SketchiMo in order to achieve the desired
editing is also presented, demonstrating that users with varied skill

levels can accomplish effective motion editing in a very reasonable
timeframe. The users often preferred to switch between selection
rather the keeping multiple selected targets on the viewport. In gen-
eral, the editing process was approached by prioritizing pose edits
through body lines in the global space and switching to joint paths
at a later stage in order to control the in-betweening of the modi-
fied poses. The local space was left mostly untouched until the later
stages of the editing process when more fine control was necessary.

Computation time SketchiMo supports fast, interactive editing.
We ran our experiments on a desktop computer, having an Intel i7-
3770 @ 3.40 GHz and 8 GB RAM with a NVidia GT640 graphics
card. The visualization of the characters and the sketch space runs
at 120 fps with 20 selected sketch targets on the screen. For 600
frames (10 sec.) of motion, the optimization required 1200 ms to
compute. For 60 frames (1 sec.), the motion is solved in 100 ms.

9 Limitations and Future Work

To ease the editing and to preserve important motion features, we
handle constraints automatically. Nevertheless, in order to intro-
duce significant changes, direct control over constraints is neces-
sary. Letting the user specify additional static constraints would be
useful when editing interactions with objects or the environment.
More advanced constraints could also be considered in order to con-
strain different aspects of the motion such as the shape of the body
line [Guay et al. 2013] or to preserve physical properties [Popović
and Witkin 1999] such as velocity and acceleration of the motion.

Body lines are a versatile solution for specifying the pose of the
character, but control over orientation is limited. While editing the
bending orientation of 1- and 2-DoFs body parts can be effectively
addressed with body lines, manipulation of axial rotation of 3-DoFs
joints is not possible in the current implementation.

SketchiMo does not support extensive manipulations of timing.
Consider the case of extending a walking motion for a few meters.
Applying a dynamic time warping would ease the problem to a cer-
tain extend, but would inevitably degenerate into unnaturally long
strides. It would be necessary to consider a discrete optimization
procedure to introduce the additional motion samples [Kim et al.
2009]. In addition, although we work with densely sampled motion
data, extensive editing can eventually result in poor sample spacing.
We plan to incorporate a resampling strategy, e.g. by fitting spline
curves to the result after each edit.

Our system successfully handles abstract concepts such as the mo-
tion path, coordinated motion, and relative relationships. Addi-
tional extensions could be envisaged to address the synchronization
and editing of multiple characters. We also plan to explore brushing
behaviors related to signal processing of the data such as exagger-
ating motion properties for semi-automated stylization.

In the future we plan to address the creation of animation by speci-
fying the motion directly with sketches, rather than editing it. Guay
et al. [2015b] demonstrated that it is possible to animate relatively
simple characters by specifying dynamic line of actions with a sin-
gle gesture. Extending their achievement to articulated characters
with multiple environmental contacts remains an ambitious prob-
lem with significant challenges.

10 Conclusion

Successful sketch-based editing relies on the choice of a small
but powerful set of interface constructs. Previous research has
demonstrated the value of constructs such as motion paths [Gle-
icher 2001], the line of action [Guay et al. 2013], and the spacetime
curve [Guay et al. 2015b].

In this paper we presented SketchiMo, a framework that can accom-
plish entirely sketch-based motion editing of full body characters.
SketchiMo is founded on the twin constructs of sketch targets and
sketch spaces. Together, these constructs are sufficient to naturally
disambiguate the role of each stroke. They are interpreted through
an underlying optimization formulation that naturally incorporates
sketched constraints from different sketch spaces and targets in a
unified formulation. Unlike some previous research, there is no re-
quirement that strokes be entered in any particular order.

The result is simple, expressive editing of all aspects of an ani-
mation, including body poses, global and local trajectories, spatial
relationships, and timing. We demonstrated that SketchiMo is a
versatile platform for expressive motion editing in production sce-
narios, including the correction of retargeting artifacts from motion
capture, stylization of animation, and in-betweening of keyframe
animation.

Acknowledgements

We thank the anonymous reviewers for their valuable comments;
Jaewon Song and Junghee Kim for the helpful discussion about
the animation process; Daseong Han for his valuable feedback on
the physics-based animation; Hyungjin Kim and Minjeong Shin for
modeling the Gump character. This research was supported by the
National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIP) (2014R1A2A1A01002871).

References

ANNETT, M., ANDERSON, F., BISCHOF, W. F., AND GUPTA, A.
2014. The pen is mightier: Understanding stylus behaviour while
inking on tablets. In Proceedings of GI ’14, 193–200.

ASSA, J., CASPI, Y., AND COHEN-OR, D. 2005. Action synopsis:
Pose selection and illustration. ACM Trans. Graph. 24, 3 (July),
667–676.

AUTODESK. Maya, MotionBuilder products. www.autodesk.com.

AUTODESK. Mudbox. www.autodesk.com/mudbox.

BLENDER FOUNDATION. Blender. www.blender.org.

BOROSÁN, P., JIN, M., DECARLO, D., GINGOLD, Y., AND
NEALEN, A. 2012. Rigmesh: Automatic rigging for part-based
shape modeling and deformation. ACM Trans. Graph. 31, 6
(Nov.), 198:1–198:9.

BRAND, M., AND HERTZMANN, A. 2000. Style machines. In
Proceedings of SIGGRAPH ’00, 183–192.

CHOI, M. G., YANG, K., IGARASHI, T., MITANI, J., AND LEE, J.
2012. Retrieval and visualization of human motion data via stick
figures. Comput. Graph. Forum 31, 7pt1 (Sept.), 2057–2065.

COLEMAN, P., BIBLIOWICZ, J., SINGH, K., AND GLEICHER, M.
2008. Staggered poses: A character motion representation for
detail-preserving editing of pose and coordinated timing. In Pro-
ceedings of SCA ’08, 137–146.

DE PAOLI, C., AND SINGH, K. 2015. Secondskin: Sketch-based
construction of layered 3d models. ACM Trans. Graph. 34, 4
(July), 126:1–126:10.

GLEICHER, M. 1997. Motion editing with spacetime constraints.
In Proceedings of I3D ’97, 139–148.

GLEICHER, M. 1998. Retargetting motion to new characters. In
Proceedings of SIGGRAPH ’98, 33–42.

GLEICHER, M. 2001. Motion path editing. In Proceedings of I3D
’01, 195–202.

GROCHOW, K., MARTIN, S. L., HERTZMANN, A., AND
POPOVIĆ, Z. 2004. Style-based inverse kinematics. ACM Trans.
Graph. 23, 3 (Aug.), 522–531.

GUAY, M., CANI, M.-P., AND RONFARD, R. 2013. The line
of action: An intuitive interface for expressive character posing.
ACM Trans. Graph. 32, 6 (Nov.), 205:1–205:8.

GUAY, M., RONFARD, R., GLEICHER, M., AND CANI, M.-P.
2015. Adding dynamics to sketch-based character animations.
In Proceedings of SBIM ’15, 27–34.

GUAY, M., RONFARD, R., GLEICHER, M., AND CANI, M.-P.
2015. Space-time sketching of character animation. ACM Trans.
Graph. 34, 4 (July), 118:1–118:10.

HAHN, F., MUTZEL, F., COROS, S., THOMASZEWSKI, B.,
NITTI, M., GROSS, M., AND SUMNER, R. W. 2015. Sketch
abstractions for character posing. In Proceedings of SCA ’15,
185–191.

HO, E. S. L., KOMURA, T., AND TAI, C.-L. 2010. Spatial re-
lationship preserving character motion adaptation. ACM Trans.
Graph. 29, 4 (July), 33:1–33:8.

HSU, E., PULLI, K., AND POPOVIĆ, J. 2005. Style translation for
human motion. ACM Trans. Graph. 24, 3 (July), 1082–1089.

HSU, E., DA SILVA, M., AND POPOVIĆ, J. 2007. Guided time
warping for motion editing. In Proceedings of SCA ’07, 45–52.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A sketching interface for 3d freeform design. In Proceedings of
SIGGRAPH ’99, 409–416.

JOHNSON, S. G., 2010. The nlopt nonlinear-optimization package.
http://ab-initio.mit.edu/nlopt.

KHO, Y., AND GARLAND, M. 2005. Sketching mesh deforma-
tions. ACM Trans. Graph. 24, 3 (July), 934–934.

KIM, M., HYUN, K., KIM, J., AND LEE, J. 2009. Synchronized
multi-character motion editing. ACM Trans. Graph. 28, 3 (July),
79:1–79:9.

LASSETER, J. 1987. Principles of traditional animation applied to
3d computer animation. Comput. Graph. 21, 4 (Aug.), 35–44.

LE CALLENNEC, B., AND BOULIC, R. 2006. Robust kinematic
constraint detection for motion data. In Proceedings of SCA ’06,
281–290.

LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to inter-
active motion editing for human-like figures. In Proceedings of
SIGGRAPH ’99, 39–48.

LEE, J. 2008. Representing rotations and orientations in geometric
computing. IEEE Comput. Graph. Appl. 28, 2 (Mar.), 75–83.

LEVI, Z., AND GOTSMAN, C. 2013. ArtiSketch: A system for
articulated sketch modeling. Comput. Graph. Forum 32, 2pt2
(May), 235–244.

LIN, J., IGARASHI, T., MITANI, J., AND SAUL, G. 2010. A
sketching interface for sitting-pose design. In Proceedings of
SBIM ’10, 111–118.

MCLAUGHLIN, T., CUTLER, L., AND COLEMAN, D. 2011. Char-
acter rigging, deformations, and simulations in film and game
production. In SIGGRAPH ’11 Courses, 5:1–5:18.

MUKAI, T., AND KURIYAMA, S. 2009. Pose-timeline for propa-
gating motion edits. In Proceedings of SCA ’09, 113–122.

NEALEN, A., SORKINE, O., ALEXA, M., AND COHEN-OR, D.
2005. A sketch-based interface for detail-preserving mesh edit-
ing. ACM Trans. Graph. 24, 3 (July), 1142–1147.

NEFF, M., AND FIUME, E. 2003. Aesthetic edits for character
animation. In Proceedings of SCA ’03, 239–244.

NOCEDAL, J., AND WRIGHT, S. 2006. Numerical optimization.
Springer Science & Business Media.

ÖZTIRELI, A. C., BARAN, I., POPA, T., DALSTEIN, B., SUM-
NER, R. W., AND GROSS, M. 2013. Differential blending
for expressive sketch-based posing. In Proceedings of SCA ’13,
155–164.

PIXOLOGIC. Zbrush. www.pixologic.com.

POPOVIĆ, Z., AND WITKIN, A. 1999. Physically based motion
transformation. In Proceedings of SIGGRAPH ’99, 11–20.

POPOVIĆ, J., SEITZ, S. M., AND ERDMANN, M. 2003. Mo-
tion sketching for control of rigid-body simulations. ACM Trans.
Graph. 22, 4 (Oct.), 1034–1054.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs
and adverbs: Multidimensional motion interpolation. IEEE
Comput. Graph. Appl. 18, 5 (Sept.), 32–40.

SCHMID, J., SENN, M. S., GROSS, M., AND SUMNER, R. W.
2011. Overcoat: An implicit canvas for 3d painting. ACM Trans.
Graph. 30, 4 (July), 28:1–28:10.

SHAPIRO, A., CAO, Y., AND FALOUTSOS, P. 2006. Style compo-
nents. In Proceedings of GI ’06, 33–39.

TAKAYAMA, K., PANOZZO, D., SORKINE-HORNUNG, A., AND
SORKINE-HORNUNG, O. 2013. Sketch-based generation and
editing of quad meshes. ACM Trans. Graph. 32, 4 (July), 97:1–
97:8.

TASSA, Y., EREZ, T., AND TODOROV, E. 2012. Synthesis and
stabilization of complex behaviors through online trajectory op-
timization. Intelligent Robots and Systems (Oct.), 4906–4913.

TERRA, S. C. L., AND METOYER, R. A. 2004. Performance
timing for keyframe animation. In Proceedings of SCA ’04, 253–
258.

THORNE, M., BURKE, D., AND VAN DE PANNE, M. 2004. Mo-
tion doodles: An interface for sketching character motion. ACM
Trans. Graph. 23, 3 (Aug.), 424–431.

WANG, J., DRUCKER, S. M., AGRAWALA, M., AND COHEN,
M. F. 2006. The cartoon animation filter. ACM Trans. Graph.
25, 3 (July), 1169–1173.

WEI, X., AND CHAI, J. 2011. Intuitive interactive human-
character posing with millions of example poses. IEEE Comput.
Graph. Appl. 31, 4 (July), 78–88.

WITKIN, A., AND POPOVIC, Z. 1995. Motion warping. In Pro-
ceedings of SIGGRAPH ’95, 105–108.

YOO, I., VANEK, J., NIZOVTSEVA, M., ADAMO-VILLANI, N.,
AND BENES, B. 2014. Sketching human character animations
by composing sequences from large motion database. Vis. Com-
put. 30, 2 (Feb.), 213–227.

YOO, I., MASSIH, M. A., ZIAMTSOV, I., HASSAN, R., AND
BENES, B. 2015. Motion retiming by using bilateral time con-
trol surfaces. Computers & Graphics 47, 59–67.

