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Figure 1: (a) There are two major issues in 360◦ panoramic video creation using multiple cameras: parallax in the overlapping regions and
loss of richness caused by downsampling. (b) Rich360 handles the two issues with a deformable spherical projection surface and non-uniform
ray sampling.

Abstract

This paper presents Rich360, a novel system for creating and view-
ing a 360◦ panoramic video obtained from multiple cameras placed
on a structured rig. Rich360 provides an as-rich-as-possible 360◦

viewing experience by effectively resolving two issues that occur in
the existing pipeline. First, a deformable spherical projection sur-
face is utilized to minimize the parallax from multiple cameras. The
surface is deformed spatio-temporally according to the depth con-
straints estimated from the overlapping video regions. This enables
fast and efficient parallax-free stitching independent of the num-
ber of views. Next, a non-uniform spherical ray sampling is per-
formed. The density of the sampling varies depending on the impor-
tance of the image region. Finally, for interactive viewing, the non-
uniformly sampled video is mapped onto a uniform viewing sphere
using a UV map. This approach can preserve the richness of the
input videos when the resolution of the final 360◦ panoramic video
is smaller than the overall resolution of the input videos, which is
the case for most 360◦ panoramic videos. We show various results
from Rich360 to demonstrate the richness of the output video and
the advancement in the stitching results.
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1 Introduction

Unlike a typical rectangular video that shows only the front view of
a scene, a 360◦ panoramic video captures omni-directional lights
from the surrounding environment. This allows a viewer to inter-
actively look around the scene, possibly providing a strong sense
of presence. This potential change of the viewing paradigm arising
from the use of 360◦ panoramic videos has attracted much attention
from the industry and the general public. Panoramic video stream-
ing services are now available through companies such as Youtube
and Facebook and head-mounted display devices such as Samsung
GearVR and Oculus Rift that support 360◦ viewing are starting to
be widely deployed. Content creators have begun to produce 360◦

panoramic videos in order to deliver stories with more visually im-
mersive experiences than previously possible.

One of the most popular methods to produce a professional 360◦

panoramic video utilizes a structured panoramic rig and multiple
wide-angle, small-sized cameras (e.g. GoPro) with 2K or higher
resolution (Figure 2). Two additional steps follow before obtaining
a final 360◦ panoramic video. First, the videos obtained from the
multiple cameras are aligned on a viewing sphere surface. Blend-
ing and exposure adjustments are required for smooth transition be-
tween adjacent videos. Second, the final spherical video is rendered
through uniform sampling of the sphere surface according to the
target rectangular resolution (i.e. equirectangular projection). A
typical 360◦ panoramic video player projects the spherical video
onto a 3-dimensional sphere and renders a desired scene with a vir-
tual camera placed in the middle of the sphere. The viewer can then
rotate the camera to interactively navigate through the video space.

We observed two problems in the existing workflow that can de-
grade the quality and the richness of the original source obtained
from the multiple cameras (Figure 1(a)). First, the parallax between
cameras may cause disturbing artifacts such as misalignment and
discontinuity [Szeliski 2006]. While use of mirrors can be a rem-
edy to minimize the parallax, a full 360◦ panoramic video cannot
be produced in this manner due to occlusion. Second, the reso-
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Figure 2: Two widely used structured panoramic rigs with six Go-
Pro cameras: Freedom360 and 360Heros.

lution of the final 360◦ panoramic video is usually smaller than
that of the original source videos combined. For example, a com-
mon panoramic rig captures more than 30 million pixels using six
or more cameras. However, rendering a 4K resolution image from
these sources will end up wasting more than half of the information.
Moreover, because the virtual camera displays only a part of the
video at any given time, the resolution of the video that the viewer
experiences is even lower. Previous research on panoramic video
creation has concentrated mostly on the first issue while neglecting
the second.

In this paper, we present Rich360; a novel system that provides the
viewer with an as-rich-as-possible 360◦ panoramic video by effi-
ciently handling the aforementioned two issues (Figure 1(b)). The
Rich360 pipeline is specifically designed for structured camera ar-
rays. The first step is to perform 3D calibration of the cameras
placed on the rig. While previous video stitching approaches typ-
ically apply pairwise video warping in an undeformed projected
space [Perazzi et al. 2015; Jiang and Gu 2015], Rich360 deforms
the projection sphere to minimize parallax artifacts using a small
number of 3D points recovered from overlapping image regions.
Therefore, fast and efficient stitching is possible with a single opti-
mization regardless of the number of input videos. In the rendering
process, we perform an importance-based non-uniform ray sam-
pling to preserve the information of the source as much as possible.
Rich360 also allows the content creator to manually assign a higher
resolution to desired regions in a keyframing manner. Finally,
for playback, the resulting non-uniform 360◦ panoramic video is
mapped onto a uniform sphere using a UV map that contains ray
information. We demonstrate that Rich360 delivers much richer vi-
sual information compared to that produced by existing methods,
through various scenes and resolution tests.

The main contributions of this work can be summarized as follows:

• A novel approach to creating and viewing an as-rich-as-
possible 360◦ panoramic video under a given resolution

• An efficient stitching method that employs a deformable
spherical projection surface where calibrated videos are pro-
jected with minimal parallax artifacts

• Non-uniform spherical ray sampling that assigns an appropri-
ate resolution according to the importance of image regions

2 Related Work

Parallax Removal Image stitching combines overlapping views
from multiple cameras into a wide field of view single panoramic
image. This process starts with the geometric alignment of multi-
ple views in a common image space. The mathematical models of
the motions between the views have been well established [Szeliski
2006] for the ideal situation where the images are captured from the
same center of projection. However, it is difficult to assume such a

configuration in the real world. For general use, it is necessary to
address the parallax effect caused by the use of multiple cameras.
A common strategy is to find feature (or pixel) correspondences
in the overlapping region and to warp the images in the common
2D space to match the correspondences. Advanced warping meth-
ods for parallax-free image stitching have been introduced [Uytten-
daele et al. 2004; Lin et al. 2011; Zaragoza et al. 2014; Chang et al.
2014; Zhang and Liu 2014; Lin et al. 2015; Li et al. 2015]. Another
strategy similar to our stitching method utilizes depth information
in the overlapping region to synthesize a novel view using image-
based rendering [Shum et al. 2008; Chaurasia et al. 2013]. Uytten-
daele et al. [2004] compensated for the parallax in the overlapping
region by recovering a multiperspective image using a plane sweep-
ing method. Methods generating a seamless light-field panoramic
image have also been proposed [Richardt et al. 2013; Birklbauer
and Bimber 2014]. However, they require a relatively dense ray
space acquired by rotating the camera.

Handling parallax for video stitching is more challenging due to
moving objects and camera motion. Applying image stitching
methods to each frame individually would result in noticeable jitter-
ing artifacts over the sequence [Perazzi et al. 2015]. A few attempts
to resolve this were recently reported. Zhi and Cooperstock [2012]
compute a depth map for the overlapping regions and extrapolate
the depth using color segments. For dynamic image stitching, their
method synthesizes the panoramic images of foreground (i.e. mov-
ing objects) and background layers separately. Perazzi et al. [2015]
extended the local warping method based on the optical flow, for
parallax removal of unstructured camera arrays. Pairwise warping
fields are computed using a weighted warp extrapolation and tem-
poral instability is resolved by a constrained global relaxation step
per frame. Jiang and Gu [2015] explicitly formulated the video
stitching problem as a spatio-temporal mesh optimization that is
built upon the method proposed by Zhang and Liu [2014]. Bundle
adjustment for all the frames is required to minimize the accumu-
lated deformations caused by the pairwise warping. Unlike pre-
vious approaches that utilize pairwise video warping, Rich360 de-
forms the projection sphere to compensate for the disparities in the
overlapping regions while preserving the spatio-temporal smooth-
ness. Consequently, calibrated videos are projected onto the de-
formed sphere with minimal parallax artifacts. As the deformation
can be formulated as a single linear system regardless of the num-
ber of the input videos, our method is faster and more efficient than
previous methods.

Spherical Projection Our non-uniform spherical ray sampling
optimizes the projection mapping from the deformed 3D sphere
to a 2D image plane while considering the importance of im-
age regions. Similarly, there have been previous works that gen-
erate optimal projections. Because a sphere is not developable,
fitting a panoramic and wide-angle image into a flat image in-
evitably introduces shape distortions [Zelnik-Manor et al. 2005].
Kopf et al. [2009] introduced locally-adapted projections to re-
duce panorama distortions (e.g. curving straight lines) for better
perception of salient shapes. The cylindrical projection surface is
deformed to become planar in user-specified regions to avoid the
formation of curved lines in the final projection image. Content-
preserving projection [Carroll et al. 2009] maps a wide-angle image
defined on the viewing sphere to a flat image with minimal shape
distortion, while preserving salient features. These previous stud-
ies focused on providing a user with a distortion-free wide-angle
image. In contrast, Rich360 is designed for a different purpose of
assigning a wider projection area to important regions, resulting in
a distorted appearance of the rendered spherical video. This is mo-
tivated by the observation that a viewer enjoys a 360◦ panoramic
video in an interactive way through a specifically-designed player.
The distorted spherical video is efficiently restored during the play-



back.

Mesh-based Video Processing The core of Rich360 is built on a
mesh optimization scheme that has been widely utilized for various
video applications. Video stabilization [Liu et al. 2009; Wang et al.
2013; Liu et al. 2013] employs mesh optimization in computing
spatially-varying warps from each input frame into a stabilized out-
put frame. Lang et al. [2010] proposed a stereoscopic mesh warping
technique to change the disparity range of stereoscopic video. He
et al. [2013] fit a panoramic image with an irregular boundary into
a rectangle via content-preserving mesh warping considering line
structures in the image. For temporally coherent resizing of videos,
video retargeting [Wang et al. 2009; Krähenbühl et al. 2009; Wang
et al. 2010] deforms a grid mesh placed on the image according to
the importance. When the aspect ratio of the target display is dif-
ferent from that of an input video, to avoid visible distortions the
shape of the important quads is preserved and less important quads
are distorted more. We formulate the non-uniform ray sampling of
the deformed sphere as a mesh optimization with a few constraints
on the target image space in an effort to preserve the information
of the source as much as possible. The resulting mesh is used for
interpolating the ray.

3 Rich360 Pipeline

The pipeline of Rich360 consists of four steps: calibration, projec-
tion, rendering, and viewing. In this section, we briefly describe the
purpose and process of each step. In sections 4 and 5, the math-
ematical details of the projection step and the rendering step are
described, respectively.

Calibration To combine views from multiple cameras, existing
stitching methods for images or videos mostly utilize feature-based
calibration that can be applied to arbitrary environments where the
camera arrangement is typically temporary. The success of these
methods heavily depends on the quality of the detected features
and the identified correspondences. As most of the rigs for 360◦

panoramic filming are tightly structured, it is reasonable to perform
the calibration in advance and reuse the result as a template. In
practice, the commercial video stitching software such as Kolor’s
Autopano Video and VideoStich Studio already offers usable tem-
plates for the off-the-shelf rigs.

The calibration step estimates the intrinsic and extrinsic parameters
of the cameras on a structured rig. We adopt the classical calibration
method that utilizes a physical pattern like a checkerboard. With
the position of the rig fixed, one moves around holding the checker-
board to capture the pattern viewed from each camera. This process
is repeated for various distances and angles for accurate calibration.
After the patterns are detected, the traditional lens calibration and
the stereo calibration between adjacent cameras are performed with
a unified projection model proposed for a wide-angle camera [Mei
and Rives 2007]. Additionally, all camera parameters are refined
by bundle adjustment [Li et al. 2013]. Please refer to the book by
Hartley and Zisserman [2003] and recent studies [Mei and Rives
2007; Li et al. 2013] for the complete technical details on the cal-
ibration and bundle adjustment. Once all the cameras on the rig
are calibrated, the output parameters can be reused for other scenes
captured using the same rig.

Projection In the projection step, the input images are individu-
ally projected onto a common projection surface according to the
corresponding camera parameters. Generally, the projection sur-
face is defined as a sphere for a full 360◦ panoramic video. A sim-
ple sphere, however, cannot represent depth information, which is
crucial for parallax handling. Therefore, Rich360 defines a pro-
jection surface with varying depth to minimize the disparities in

Figure 3: Projected images onto the sphere with differing radial
distances; (a) 2.1m (b) 7m. The parallax artifacts in the region at
the same distance as the radial distance of the sphere are removed.

an overlapping region (Section 4). First, the disparities are com-
puted using feature correspondences that are obtained by applying
SIFT [Lowe 2004] and an optical flow method [Brox et al. 2004].
The triangulation between adjacent two cameras then recovers 3D
points. Finally, the spherical projection surface is deformed us-
ing the 3D points as constraints while ensuring spatio-temporal
smoothness. As a result, the images projected on the deformed
spherical surface have minimal parallax artifacts.

Rendering In the rendering step, the stitched spherical images are
fitted into a rectangular frame. The traditional equirectangular pro-
jection is inefficient when a desired rendering resolution is smaller
than the resolution obtained by summing up all of the source videos
(i.e. downsampling), as detailed information in the source can be
omitted during the sampling. The main strategy of Rich360 is to
assign more rays (i.e. pixels) to important regions and fewer rays to
less important homogeneous regions to fully exploit the resolution
of the source videos. The importance of a region is calculated by
the combination of the image gradient, saliency, and face detector.
Rich360 also provides a key-frame based mechanism for users who
wish to assign the importance manually.

We formulated this non-uniform sampling as an optimization prob-
lem that projects the mesh obtained in the projection step onto the
target image space that is defined using the spherical coordinates
system. First, the target width and the height of a quad face are cal-
culated according to the importance of the pixels within the quad.
A quad face with higher importance occupies a bigger area in the
target image space to have more pixels assigned for sampling. The
final ray mesh is obtained by optimizing the vertex positions in the
image space, which satisfies a few constraints including the tar-
get size. In this process, the degree of non-uniformness can be
controlled through a user parameter. Each pixel in the final video
is determined by sampling the pixel of each video projected onto
the deformed surface, along the linearly interpolated ray from the
surrounding vertices using the spherical coordinates. Finally, we
perform blending and exposure adjustment using existing meth-
ods [Szeliski 2006] to create a seamless resulting image. The fi-
nal ray mesh sequence is converted into UV space and stored with
a header containing the mesh resolution to be used in the viewing
step.

Viewing For interactive viewing, a Rich360 player maps the non-
uniformly sampled video onto the viewing sphere with minimal
overhead using the ray mesh sequence. First, a viewing sphere is
constructed with resolution equal to that of the final ray mesh. Each
video frame is applied to the sphere as a texture map. The UV posi-
tion of each vertex in the viewing sphere is determined through the
corresponding UV information in the ray mesh sequence. The rest
of the process remains the same as the existing workflow. A virtual
camera is created in the center of the sphere, which can be rotated
interactively by the user.



Figure 4: (a) A resulting mesh from the optimization without use
of Equation 3. The magenta circle shows the problematic vertices
that have negative radial distances. (b) The same mesh generated
using Equation 3 that minimizes the first partial derivatives.

4 Deformable Spherical Projection Surface

We represent a projection sphere as anm×nmeshM = (V, F,Q).
V denotes a set of vertices V = {v1, . . . , vm×n} defined in the
spherical coordinate system, where vi = (θi, φi, r). F and Q de-
note a set of triangle faces and quad faces, respectively. The quad
faces are used in Section 5. Uniform sampling of m horizontal an-
gles (0 ≤ θ ≤ 2π) and n vertical angles (0 ≤ φ ≤ π) produces
a sphere mesh. A simple sphere has a single radial distance value
r from the origin for all the vertices. However, r can play a role
as a zero parallax distance, as shown in Figure 3. Therefore, our
goal in the projection step is to generate the optimized projection
surfaceM t that has locally-varying radial distances rti at frame t to
minimize the parallax in the overlapping regions between adjacent
images.

A set of 3D points P t that will constrain the mesh in the optimiza-
tion step is computed using features in the overlapping regions.
We first extract the sparse feature points from each image using
SIFT [Lowe 2004]. Feature correspondences are established be-
tween two adjacent images to compute disparities. However, the
sparse feature matching process may fail to capture the disparities
in textureless regions. Therefore, similar to previous stereoscopic
image processing methods [Lang et al. 2010], we obtain additional
disparities from downsampled dense correspondences that are es-
timated using an optical flow method [Brox et al. 2004]. Through
our experiments, we found that the reliability and the accuracy of
both methods decrease when they are applied to the original im-
ages, because, first, a wide-angle camera suffers from severe lens
distortions in the areas close to frame borders and, second, the ori-
entations of the cameras on the rig are very different. As a remedy,
both methods are applied to the spherical images projected onto the
default sphere (r = 5000mm) similar to Perazzi et al. [2015]. A
simple linear triangulation [Hartley and Zisserman 2003] recovers
ptk ∈ P t from the disparities and then ptk is converted to the spher-
ical coordinates.

The energy function that measures the difference between rti and
ptk can be defined as

Ep =
∑
k

‖
∑

i∈f(pt
k

)

λt
ir

t
i − r(ptk)‖2, (1)

where f(ptk) is a set of indices to vertices comprising a face con-
taining ptk in the 2D polar coordinate space (θ, φ). λt

i is the
barycentric weights for (θ, φ) of ptk with respect to those of the
surrounding vertices. Equation 1 enforces the linear combination
of surrounding vertices rti to match r(ptk) that denotes the radial
distance of ptk.

To encourage rti to vary smoothly in the resulting mesh, we add a

Figure 5: (a) The equirectangular projection image from the sim-
ple sphere (r = 3000mm to remove the parallax of the front stone
tower). The color frames represent the field of views of the cam-
eras. (b) The equirectangular projection image from the deformed
spherical projection surfaces. The color boxes show close-ups of
the overlapping regions at different depths.

spatial smoothness term as follows.

Es1 =
∑
i

‖rti −
1

ni

∑
j∈N(i)

rtj‖2, (2)

where N(i) denotes the indices of the 4-connected neighbor ver-
tices of vti and ni is the cardinality of N(i). Es1 describes a Lapla-
cian smoothing operation that has been successfully utilized in the
field of differential geometry processing [Vollmer et al. 1999]. This
term smoothly interpolates rti in the non-overlapping regions by
minimizing the second partial derivatives of rti . However, if the
gradient of rti in the overlapping regions is relatively large, min-
imizing Ep and Es1 may lead to unstable results that have either
negative or very large values.

Therefore, we regularize the vertices that are not constrained byEp

by minimizing the approximate first partial derivatives. The energy
functions are as follows.

Edx =
∑

(i,j)∈Ω̄

‖ 1
2
rt(i+ 1, j)− 1

2
rt(i− 1, j)‖2,

Edy =
∑

(i,j)∈Ω̄

‖ 1
2
rt(i, j + 1)− 1

2
rt(i, j − 1)‖2. (3)



Figure 6: (a) The initial arrangement of M t on the target image. (b) The average importance map of Sx and Sy . The map is color coded
from blue (0) to red (1). (c) The user provided polygonal masks where the color indicates the level of importance. (d) The rendered image
overlaid with the resulting ray mesh.

rt(i, j) represents the radial distance of vti×m+j at the ith row and
the jth column of M t. Ω̄ denotes a set of vertices that are not con-
strained by P t. Edx and Edy approximate the first partial deriva-
tives in the horizontal and the vertical direction, respectively. Fig-
ure 4 shows the effect of applying Equation 3 to the resulting mesh.

The following energy function takes temporal smoothness into ac-
count.

Et1 =
∑
i

‖rti −
1

2tw

∑
j∈T (i,t)

rj‖2, (4)

where tw is the temporal window size and T (i, t) denotes a set of
indices to the temporal neighbor vertices of rti from frame t − tw
to t+ tw. tw is set to 3 for all of our experiments. Et1 encourages
the radial distance of vti to vary smoothly in time.

Our final optimization can be expressed as a linear combination of
Equation 1 to 4:

arg min
{rti}t,i

∑
t

αpEp + Es1 + Edx + Edy + Et1, (5)

where αp is the weight for Ep, which determines the influence
of the constraining 3D points over the projection surface. We
set αp = 2 for all of our experiments. Solving the linear sys-
tem of Equation 5 produces the deformed spherical projection sur-
faces at each frame where the images are projected with mini-
mal parallax artifacts (Figure 5(b)), while preserving the spatio-
temporal smoothness. Because our optimization scheme computes
the meshes for multiple videos simultaneously at every frame, a
long video may require a huge amount of memory to process. We
take an approach similar to Wang et al. [2009] to improve the scal-
ability of our method. A long video is divided into short clips (20
frames in our experiments) and the optimization for each clip is
solved sequentially. To achieve a smooth transition between two
consecutive clips, the clips are overlapped with tw frames. The
meshes for the first tw frames of each clip are strongly constrained
to follow the results from the last tw frames of the previous clip.

5 Non-uniform Ray Sampling

Given a target resolution Iwidth × Iheight, the rendering step first
assigns a ray that is defined as a pair of longitude and latitude (θ, φ),
to each pixel in the target image. Sampling from the projected orig-
inal image at the position corresponding to the ray determines the
color of the pixel. Let vti of M t be augmented with the 2D image
coordinates (xti, y

t
i). The initial arrangement of the vertices with a

constant interval on the target image (i.e. regular grid) is equivalent
to the equirectangular projections (Figure 6(a)). The ray for each
pixel can be computed by linearly interpolating (θi, φi) of the sur-
rounding vertices. The number of samples between the neighboring
vertices depends on the length of their interval in the image coor-
dinates. Therefore, our goal is to widen the image area occupied

Figure 7: The influence of Nc on the resulting ray mesh. Nc = 0
produces the equirectangular projections.

by dth quad face qtd of M t if the area contains important informa-
tion (Figure 6(d)). We formulate this as an optimization problem of
(xti, y

t
i) in the target image space.

Similar to previous content-aware methods [Wang et al. 2009;
Krähenbühl et al. 2009], we estimate the importance of each pixel
by combining a range of measures in an effort to reflect compre-
hensive information from low level features (e.g. image gradient)
to high level features (e.g. human face). We use two importance
maps Sx and Sy accounting for x and y intervals of the sampling.
The two importance maps build on two normalized gradient maps
[0, 1] obtained by performing the Sobel kernels for x and y direc-
tions on the initial equirectangular projection image, indicating the
structural details. Next, the normalized saliency map [0, 1] consid-
ering the attractiveness of a region [Yildirim and Süsstrunk 2015] is
multiplied to each importance map to cull out trivial and repeated
structural textures. Finally, as a human face is usually one of the
most important objects, we assign a high importance value to the
face regions in Sx and Sy detected by existing methods [Viola and
Jones 2001].

The automatic importance detectors may not be perfect in every cir-
cumstance. Therefore, Rich360 provides a user with an interactive
tool with which the user can mark low or high importance to the
desired regions, as shown in Figure 6(c). To reduce per-frame man-
ual intervention, the user provided polygonal masks on sparse key
frames are propagated across the sequence using linear interpola-
tion. The user masks are applied to both of the importance maps.
Finally, the importance sxtd and sytd of a quad face qtd is defined
as the average importance of interior pixels in Sx and Sy at each
frame, respectively.

The target width qwt
d and the height qht

d of qtd are obtained by sxtd
and sytd as follows.

qwt
d =

(sxt
d)Nc∑

j∈row(d)
(sxt

j)Nc × Iwidth

qht
d =

(syt
d)Nc∑

j∈col(d)
(syt

j)Nc × Iheight
, (6)

where row(d) and col(d) denote a set of the indices of the quads
that belong to the same row and column as qd, respectively. Equa-
tion 6 computes qwt

d and qht
d according to the ratio of sxtd and

sytd to the sum of the importances in the same row and column,



Figure 8: Rich360 player restores the original shape of the non-
uniformly rendered spherical image using the accompanying ray
mesh. This process can lead to jagging artifacts on the strong hori-
zontal and vertical lines that are skewed in the rendered image (a).
Incorporating Equation 9 with line detection removes these arti-
facts (b).

respectively. Nc is a user parameter that determines the degree
of non-uniformness. As Nc becomes greater, accordingly stronger
contrast of the resolution between the quads is obtained, as shown
in Figure 7.

In the optimization, the width and the height of each quad are con-
strained to be qwt

d and qht
d from Equation 6.

Eg =
∑
d

∑
{i,j}∈hE(qt

d
)

‖(xtj − xti)− qwt
d‖2

+
∑
d

∑
{i,j}∈vE(qt

d
)

‖(ytj − yti)− qht
d‖2, (7)

where hE(qtd) and vE(qtd) denote a set of directed edges (i.e. i→
j) of qtd along the horizontal and vertical directions, respectively.

To smoothen the variations of the resolution across the quads and
avoid the face flipping problem, we add a similarity transformation
term [Igarashi et al. 2005] that has been widely employed as a met-
ric for local shape distortions.

Es2 =
∑
f

βt
f‖vf1 − (vf2 + u(vf3 − vf2) + vR90(vf3 − vf2))‖2,

(8)
where (vf1, vf2, vf3) denotes the vertices comprising a trian-
gle face in the image space and R90 is the 90 rotation matrix,(

0 1
−1 0

)
. The local coordinates u and v are computed from

the initial uniform mesh. βt
f is the weight for the similarity trans-

formation term of each face. The detailed derivation of this term
can be found in a paper by Igarashi et al. [2005]. This term mea-
sures the deviation of a triangle under a similarity transformation.
Consequently, each quad is encouraged to be shaped into a rectan-
gle. To completely dispose of the face flipping problem, we take
an iterative approach. Initially, we set βt

f = 1 for all of the faces.
After solving Equation 11, flipped faces are identified by examin-
ing the face orientation. The corresponding weights are then set
to a very large number ( βt

f = 1000 in our case). Equation 11 is
solved again with the updated weights to prevent the face flipping
by strongly enforcing the shape of the corresponding faces to be a
proper rectangle. This process is repeated until no face flipping is
detected.

Unlike previous mesh parameterization methods that minimize the
distortions of the resulting image [Kopf et al. 2009; Carroll et al.

2009], Rich360 intentionally distorts the resulting spherical image
to allocate more sample pixels in important regions. The distorted
spherical video is restored back during the playback in the viewing
step by utilizing the resulting mesh. As a result, jagging artifacts
can arise from the distortions across strong horizontal and vertical
lines. Figure 8 shows an example of this problem. In the case of
the vertical line, the skew distortion in the horizontal direction gen-
erates aliasing along the line when rendered. A similar explanation
is true for the horizontal line. This aliasing becomes apparent when
the spherical image is restored to the original shape.

To avoid this artifact, we minimize the skew distortion of the quad
face containing a strong horizontal or vertical line. Line segments
are first detected by the method proposed by Giol et al. [2008]. Di-
agonal lines are filtered out and the remaining segments are labeled
as either a horizontal or vertical line; hLine and vLine, respec-
tively. All quads qtd containing the line segments minimize the fol-
lowing energy function in the optimization.

Ek =
∑
d

∑
{i,j}∈hE(hLine∈qt

d
)

‖ytj − yti‖2

+
∑
d

∑
{i,j}∈vE(vLine∈qt

d
)

‖xtj − xti‖2 (9)

Equation 9 prevents the skew distortion of the mesh edge according
to the line direction within the quad. Figure 8 illustrates the effect
of this energy term.

To ensure efficient video compression and prevent rapid resolution
changes, a temporal smoothness term is added to the optimization
in a similar manner to that described in Section 4.

Et2 =
∑
i

‖xti −
1

2tw

∑
j∈T (i,t)

xj‖2 + ‖yti −
1

2tw

∑
j∈T (i,t)

yj‖2

(10)
Similar to previous importance-based methods [Krähenbühl et al.
2009], we apply temporal box filtering to the per-frame importance
map sxtd and sytd with the temporal window [t, t + tw] to take fu-
ture events such as moving objects into account. This simple filter-
ing achieves a smoother mesh appearance over the sequence, as the
importance of the regions largely affects the determination of the
shape of a mesh at each frame.

Finally, we minimize the sum of the above energies subject to the
boundary constraints preserving a rectangular frame:

arg min
{xt

i,y
t
i}t,i

∑
t

Eg + αsEs2 + αkEk + Et2

subject to

xti =

{
0 if vti is on the left boundary
Iwidth if vti is on the right boundary

yti =

{
0 if vti is on the top boundary
Iheight if vti is on the bottom boundary

. (11)

The weight αs for the spatial smoothness is set to 0.5. αk is the
weight for minimizing the skew distortion described by Equation 9.
We set αk = 10 for all of our experiments to avoid jagged lines.
Solving Equation 11 for all the frames in the same manner as in
Section 4 produces the temporally coherent ray meshes used for the
rendering. The image coordinates (xi, yi) of the resulting meshes
are normalized by Iwidth and Iheight and then stored in a separate
file. Along with the rendered non-uniform 360◦ panoramic video,
the corresponding mesh file is fed into the player in the viewing
step. The 360◦ panoramic video is undistorted and mapped onto



Figure 9: Comparison of stitching results from Rich360, GCW, and STCPW.

a uniform viewing sphere by modifying the UV coordinates of the
sphere according to the given mesh at every frame.

The file size of the mesh sequence depends on the number of ver-
tices. This paper does not address mesh compression as Rich360 is
not specifically intended for video streaming. However, for real-
time transmission of the meshes over the network, reduction of
the bit rate is an important consideration. As the resulting meshes
from Rich360 are temporally coherent, a dynamic mesh compres-
sion method using a motion prediction scheme [Collet et al. 2015]
can achieve a streamable bit rate for the mesh size used in our ex-
periments.

6 Results

Rich360 is implemented with C++. The Intel Math Kernel Li-
brary(MKL) is used for sparse solvers in the optimization pro-
cess. All of the experiments were performed on a PC with an Intel
Core i7-5930K 3.5Ghz CPU, 32 GB memory, and NVidia GeForce
GTX Titan X graphics chipset. A wide variety of datasets were
captured with two popular panoramic capture rigs (Freedom360
Mount, 360Heros Pro6L) that have six GoPro Hero 4 Black cam-
eras, each capturing 2.7K (2704 x 2028) video at 30fps. For all of
our experiments, we used the same mesh size of 181 x 91 (16471
vertices), which was determined empirically.

Parallax Removal
Figure 9 shows a comparison of stitching results on various scenes
from our method and two state-of-the-art methods: global coher-
ent warping (GCW) proposed by Perazzi et al. [2015] and spatio-
temporal content-preserving warping (STCPW) proposed by Jiang

Figure 10: Comparison with the dataset provided by the authors
of GCW. (Top) The resulting frames produced by GCW that were
captured from the accompanying video of the paper. (Bottom) The
resulting frames from Rich3601. Compared to GCW, Rich360 han-
dles temporal-jittering in optical flows better as seen on the wall of
the front building.

and Gu [2015]. Note that we reimplemented both GCW and
STCPW because the original codes or the executable files are not
publicly available. The first column shows the initial spherical pro-

1Rich360 is applicable to an irregular camera rig if the calibration data
are available. We used Agisoft PhotoScan to estimate 3D camera parame-
ters.



Figure 11: Comparisons of rendering results from Rich360 and from the equirectangular projection. Rich360 preserves richness in important
regions. The face features are recognizable in 1K resolution and the equation on the screen is legible in the 2K resolution result from Rich360,
whereas the quality of the result from the equirectangular projection degrades rapidly with a decrease in the rendering resolution.

jection image that was used for all three methods. The same op-
tical flow and SIFT feature matching results that were utilized for
Rich360 were employed for GCW and STCPW. Blending is omit-
ted and parts of the entire stitching results are shown to clearly
demonstrate the parallax artifacts. The complete results can be
found in the accompanying video.

The first row shows a scene where a moving camera captures static
objects. The outdoor scene contains the objects that are located
far from the cameras where the parallax artifacts can be removed
well by all of the three methods. The quality of the result from
Rich360 surpasses those of the other results in the second scene
where close objects captured by moving cameras are present. The
magenta boxes in the second scene show the stitching result of the
pillar and the wall over two consecutive frames. The result from

GCW is highly dependent on the performance of the optical flow
because the calculation is done per frame without explicit formula-
tion of a temporal term. Therefore, as the authors of GCW pointed
out in their paper, when the optical flow has temporal jittering, the
stitching result suffers from the same artifact (the top row in Fig-
ure 10). STCPW added temporal terms for mesh warping. Because
it relies on a sparse set of feature correspondences computed by
SIFT, however, one or two erroneous matches can adversely influ-
ence the result. This happens often when there is a repeated pattern
as can be seen at the patterned wall of the second scene. Rich360
handles the two cases better by utilizing sufficient matching results
from the optical flow and feature detectors to reduce the effect from
noise, and by guaranteeing temporal smoothness through mesh op-
timization. The third scene shows a challenging case where moving
objects are included. Both of the results from GCW and STCPW



Rich360 GCW STCPW
Computation time 29.85 251.382 44.755

Table 1: Average computation time per frame in seconds for the
stitching step.

show parallax at people’s feet whereas results from Rich360 show
great improvement. Unlike Rich360 and STCPW, which utilize
a mesh, the per pixel warping method of GCW has an advantage
when stitching a scene that contains adjacent objects with a large
depth difference. In the last scene, to reduce the parallax of the
objects in the back, the results from Rich360 and STCPW show
parallax around the man’s silhouette, whereas the result from GCW
shows successful parallax removal.

Table 1 shows the average computation time for each method when
six 2.7K images are stitched into a single 2K image. GCW achieved
higher per pixel accuracy but required a long computation time.
For 1K resolution optical flow, GCW required over 4 minutes per
frame. STCPW required about 44 seconds with 30 × 15 mesh.
Rich360 achieved the fastest per frame computation time because
it solves only a single linear system, while showing stable results
with comparable quality.

The comparisons of stitching results can be summarized as follows.
GCW can align the images with per-pixel accuracy by utilizing an
optical flow. On the other hand, Rich360 based on a mesh opti-
mization scheme is less affected by erroneous flows at the cost of
losing pixel level accuracy. Apart from this well known trade-off
between the schemes based on optical flow or mesh optimization,
our novel projection-based method has several advantages in 360◦

video stitching. 1) Rich360 produces temporally more stable re-
sults in general compared to those yielded by previous methods, as
shown in Figure 9 and 10. 2) Results of a comparable quality can
be obtained at a lower computational cost. 3) Unlike GCW and
STCPW, Rich360 does not require additional constraints to align
the displacements of the leftmost and rightmost columns of the re-
sulting 360◦ image that are adjacent in the viewing sphere.

Non-uniform Spherical Ray Sampling
Figure 11 demonstrates the effectiveness of our non-uniform spher-
ical ray sampling method. The left column shows a comparison
between the results from Rich360 (Nc = 0.5) and the results from
the equirectangular projection. The importance maps for scene 1
and scene 3 were generated automatically. For the second scene,
the user masks shown in Figure 6(c) were utilized. Note that the re-
sults from Rich360 are distorted according to the importance. For
example, in the first scene, the person inside the magenta square
is enlarged whereas the homogeneous ceiling region is reduced.
Similarly, the presentation screen in the second scene is enlarged.
The small images in the right column show close-up views of the
magenta square regions. The images were captured in the view-
ing step after rendering the 360◦ panoramic video in 1K, 2K, and
4K resolution. The resolution of the viewing screen was Full HD.
The right-most images were captured after re-projecting the corre-
sponding regions in the original videos. With 1K equirectangular
projection, the expressions on the faces cannot be identified in the
first scene and the third scene. However, the features of the face are
recognizable in the results from Rich360. In the second scene, the
readability of the content of the screen is greatly increased with a
simple user input. Even in 2K and 4K results, the quality improve-
ment is prominent in all scenes. The quality of the 4K results from
Rich360 is almost the same as that of the original videos.

For a more quantitative analysis, we calculated the root mean square
error (RMSE) with the original videos. Figure12 shows the results.
After rendering in all 6 directions (front, right, left, back, top, bot-

Figure 12: Quantitative RMSE comparison for rendering results
from Rich360 and the equirectangular projection. The scenes used
for the comparison are shown in Figure 11. Rich360 produces su-
perior results to those from the equirectangular projection. This
advantage is prominent as the rendering resolution decreases.

Figure 13: Comparison between two results over four consecu-
tive frames obtained with (bottom) and without (top) the temporal
smoothness term,Et2. The three right columns represent difference
images between the current frame and the previous frame (images
are inverted and enhanced for visibility).

tom) with a virtual camera that has a 90 viewing angle, the average
RMSE with the original videos was calculated. For a precise com-
parison, we discarded the overlapping regions and used a simple
sphere in the projection step. Rich360 shows superior results in
all of the comparisons. The difference becomes greater with lower
resolutions. To watch the captured video from the actual interactive
viewing step, please refer to the accompanying video.

Figure 13 illustrates the effect of Et2 (Equation 10) in non-uniform
sampling. In the viewing step, the resulting video from the opti-
mization without use of Et2 (top row) exhibits flickering artifacts
in the vicinity of object edges due to rapid resolution changes. In
contrast, incorporating Et2 (bottom row) effectively removes these
artifacts. The video compression of the rendered non-uniform 360◦

sequence can also benefit from the temporal smoothness in terms
of storage efficiency. For example, the video file size of the third
scene in Figure 11 is reduced from approximately 53MB to 42MB
when 300 frames of 2K resolution images are compressed using a
Xvid codec.

7 Limitations and Future work

Rich360 transforms a video stitching task, which requires heavy
computation, into a simple and efficient mesh deformation prob-
lem based on precisely calibrated data. Therefore, the accuracy
of the camera calibration affects the final video stitching results.
The magenta circle in Figure 14(a) shows an example of a stitch-
ing based on an inaccurate camera calibration. A combination of
existing methods with Rich360 to overcome this weakness while
maintaining the efficiency would be an interesting future research



Figure 14: Limitations of Rich360. (a) the stitching result with
erroneous calibration data. Depth variation of the projection sur-
face cannot compensate for inaccurate calibration data. (b) tearing
artifacts caused by overly sparse sampling.

topic. For example, after applying our method, inaccurately cali-
brated regions can be detected and existing video warping can be
applied for improvement. Solving the camera calibration refine-
ment and the deformation of the projection surface simultaneously
is also one of our future research directions.

Our experiments show that pixels can be sampled efficiently ac-
cording to the importance of the region with non-uniform spherical
ray sampling. However, a few limitations exist. Our method takes
the importance value into account, but does not consider the avail-
able source resolution in calculating the target size of a quad face.
Therefore, when the difference between the target rendering res-
olution and the overall resolution of the input videos is small, an
oversampling problem may occur. As a simple remedy, a user can
lower the user parameter Nc. Noticeable tearing artifacts can be
formed at a less important region if the target size of the region be-
comes too small (the magenta circle in Figure 14(b)). An automatic
decision of the degree of non-uniformness and the minimum region
size considering the source resolution and visual perception can be
an interesting future work.

Rich360 can be adopted for various applications through follow-up
research. For a stereoscopic 360◦ video, our deformable spherical
projection surface can be extended by considering the disparities
to ensure a plausible and comfortable depth perception. Real-time
non-uniform sampling according to the viewing direction of the
viewer would provide a richer viewing experience. Although our
non-uniform ray sampling method is based on a projection sphere,
projection using a cube map is also viable (e.g. Facebook’s Trans-
form). Compared with the equirectangular projection, the cube map
contains pixels more efficiently without stretching the areas near
poles. This leads to a decrease of the bit rate and the storage, re-
spectively. However, the available method based on the cube map
still samples viewing angles uniformly regardless of the importance
of the region. Combining our non-uniform sampling method with a
cube map would be an interesting future research topic.

8 Conclusion

In this paper, we presented Rich360, a novel system for creating and
viewing an as-rich-as-possible 360◦ panoramic video from struc-
tured camera arrays. We introduced two novel approaches to re-
solve the two issues that arise in the existing pipeline. First, a
novel stitching method is introduced. Instead of performing pair-
wise stitching of input videos, a deformable spherical projection
surface is employed to project the input videos with minimal par-
allax artifacts. The projection surface is deformed according to
the 3D points recovered from the overlapping regions of the input
videos. This approach abstracts the stitching problem into a sin-

gle energy minimization function regardless of the number of input
videos while effectively minimizing the disparities in the overlap-
ping regions. Next, a non-uniform spherical ray sampling method is
introduced. A dense sampling is performed in the important regions
while a sparse sampling is performed in the less important regions.
The richness of the input videos is preserved with this method even
if the resolution of the final panoramic image is smaller than the
overall resolution of the input videos. Although the sampling is
non-uniform, the final viewing process restores the original content
of the video with little overhead. The stitching and rendering re-
sults were compared with those from existing methods. Rich360
shows higher temporal stability and robustness for the scenes that
have high depth variation and moving objects. Also, the computa-
tion time is faster than that of existing methods while the quality of
the results is comparable. The rendering quality shows superiority
over equirectangular projection and the richness of the input videos
is preserved even when the rendering resolution is small.
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KRÄHENBÜHL, P., LANG, M., HORNUNG, A., AND GROSS, M.
2009. A system for retargeting of streaming video. ACM Trans-
actions on Graphics (TOG) 28, 5, 126.

LANG, M., HORNUNG, A., WANG, O., POULAKOS, S., SMOLIC,
A., AND GROSS, M. 2010. Nonlinear disparity mapping for
stereoscopic 3d. ACM Transactions on Graphics (TOG) 29, 4,
75.

LI, B., HENG, L., KOSER, K., AND POLLEFEYS, M. 2013.
A multiple-camera system calibration toolbox using a feature
descriptor-based calibration pattern. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 1301–
1307.

LI, S., YUAN, L., SUN, J., AND QUAN, L. 2015. Dual-feature
warping-based motion model estimation. In Proceedings of the
IEEE International Conference on Computer Vision, 4283–4291.

LIN, W.-Y., LIU, S., MATSUSHITA, Y., NG, T.-T., AND
CHEONG, L.-F. 2011. Smoothly varying affine stitching. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 345–352.

LIN, C.-C., PANKANTI, S. U., RAMAMURTHY, K. N., AND AR-
AVKIN, A. Y. 2015. Adaptive as-natural-as-possible image
stitching. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1155–1163.

LIU, F., GLEICHER, M., JIN, H., AND AGARWALA, A. 2009.
Content-preserving warps for 3d video stabilization. ACM
Transactions on Graphics (TOG) 28, 3, 44.

LIU, S., YUAN, L., TAN, P., AND SUN, J. 2013. Bundled camera
paths for video stabilization. ACM Transactions on Graphics
(TOG) 32, 4, 78.

LOWE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. International journal of computer vision 60, 2, 91–
110.

MEI, C., AND RIVES, P. 2007. Single view point omnidirec-
tional camera calibration from planar grids. In IEEE Interna-
tional Conference on Robotics and Automation, 3945–3950.

PANOZZO, D., WEBER, O., AND SORKINE, O. 2012. Robust im-
age retargeting via axis-aligned deformation. Computer Graph-
ics Forum 31, 2pt1, 229–236.

PERAZZI, F., SORKINE-HORNUNG, A., ZIMMER, H., KAUF-
MANN, P., WANG, O., WATSON, S., AND GROSS, M. 2015.

Panoramic video from unstructured camera arrays. Computer
Graphics Forum 34, 2, 57–68.

RICHARDT, C., PRITCH, Y., ZIMMER, H., AND SORKINE-
HORNUNG, A. 2013. Megastereo: Constructing high-resolution
stereo panoramas. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1256–1263.

SHUM, H.-Y., CHAN, S.-C., AND KANG, S. B. 2008. Image-
based rendering. Springer Science & Business Media.

SZELISKI, R. 2006. Image alignment and stitching: A tutorial.
Foundations and Trends R© in Computer Graphics and Vision 2,
1, 1–104.

UYTTENDAELE, M., CRIMINISI, A., KANG, S. B., WINDER, S.,
SZELISKI, R., AND HARTLEY, R. 2004. Image-based inter-
active exploration of real-world environments. IEEE Computer
Graphics and Applications 24, 3, 52–63.

VIOLA, P., AND JONES, M. 2001. Rapid object detection using a
boosted cascade of simple features. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, vol. 1,
I–511.

VOLLMER, J., MENCL, R., AND MUELLER, H. 1999. Improved
laplacian smoothing of noisy surface meshes. Computer Graph-
ics Forum 18, 3, 131–138.

VON GIOI, R. G., JAKUBOWICZ, J., MOREL, J.-M., AND RAN-
DALL, G. 2008. Lsd: A fast line segment detector with a false
detection control. IEEE Transactions on Pattern Analysis & Ma-
chine Intelligence, 4, 722–732.

WANG, Y.-S., FU, H., SORKINE, O., LEE, T.-Y., AND SEIDEL,
H.-P. 2009. Motion-aware temporal coherence for video resiz-
ing. ACM Transactions on Graphics (TOG) 28, 5, 127.

WANG, Y.-S., LIN, H.-C., SORKINE, O., AND LEE, T.-Y. 2010.
Motion-based video retargeting with optimized crop-and-warp.
ACM Transactions on Graphics (TOG) 29, 4, 90.

WANG, Y.-S., LIU, F., HSU, P.-S., AND LEE, T.-Y. 2013. Spa-
tially and temporally optimized video stabilization. IEEE Trans-
actions on Visualization and Computer Graphics 19, 8, 1354–
1361.

XU, W., AND MULLIGAN, J. 2013. Panoramic video stitching
from commodity hdtv cameras. Multimedia systems 19, 5, 407–
426.
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