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Neural Face Skinning

Figure 1: We present a method that enables direct retargeting between two facial meshes with different shapes and mesh structures. Our
method performs well even on facial meshes with proportions that deviate from typical human faces. (© Face model: ICT-Facekit [LBZ*20],
Multiface [WZA*22], meryproject.com, VOCASET [CBL*19], BIWI [FDG*13], 2023 AnimSchool)

Abstract
Accurately retargeting facial expressions to a face mesh while enabling manipulation is a key challenge in facial animation
retargeting. Recent deep-learning methods address this by encoding facial expressions into a global latent code, but they often
fail to capture fine-grained details in local regions. While some methods improve local accuracy by transferring deformations
locally, this often complicates overall control of the facial expression. To address this, we propose a method that combines the
strengths of both global and local deformation models. Our approach enables intuitive control and detailed expression cloning
across diverse face meshes, regardless of their underlying structures. The core idea is to localize the influence of the global latent
code on the target mesh. Our model learns to predict skinning weights for each vertex of the target face mesh through indirect
supervision from predefined segmentation labels. These predicted weights localize the global latent code, enabling precise and
region-specific deformations even for meshes with unseen shapes. We supervise the latent code using Facial Action Coding
System (FACS)-based blendshapes to ensure interpretability and allow straightforward editing of the generated animation.
Through extensive experiments, we demonstrate improved performance over state-of-the-art methods in terms of expression
fidelity, deformation transfer accuracy, and adaptability across diverse mesh structures.

CCS Concepts
• Computing methodologies → Animation; Shape modeling; Machine learning;
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1. Introduction

Creating natural movements for characters is an important topic in
computer graphics. Facial animations are particularly important as
they play a key role in communication and emotional expression.
Various methods have been developed to create and manipulate nat-
ural facial animations for the character faces. Blendshape is one
of the most representative methods, providing linear parameteriza-
tion for face model [LAR*14]. It is widely used because it allows
for semantically consistent configurations across various charac-
ter faces. When the identical blendshape or facial rig is used for
different face meshes, it is referred to as corresponding parame-
terization [LAR*14]. In this case, the retargeting problem can be
solved by transferring the control parameters from one to another.
However, the corresponding parameterization is not available in
general, often leading to the requirement of manual processing.

The advent of deep learning has made it possible to auto-
mate the process of retargeting across various shapes of face
meshes, extending the possibility of corresponding parameteriza-
tion [BBP*19; CBGB20; CZG*22; GFK*18; GYQ*18; JWCZ19;
QSA*23; RBSB18; TGLX18]. Although these methods differ in
the network architectures, they share a common approach: encod-
ing the source expression into a latent code and decoding the defor-
mation assumed by the latent code on the target mesh. The latent
code that represents the expression of the entire face mesh is of-
ten referred to as a global code. It is very useful to compress the
deformation of the mesh into an implicit global code as it com-
pactly reduces the control space for animating and manipulating the
mesh. Recent methods further improved this approach by predict-
ing local deformations using global code, such as per-triangle Jaco-
bians [AGK*22; QSA*23] or per-vertex displacements [CZG*22;
WLL*23]. This eliminated the need for manually defining corre-
spondences between meshes and enabled retargeting across meshes
with different structures. Unfortunately, because the global code
lacks the ability to capture the detailed deformations required for
each local region, the expression from the source may not be accu-
rately retargeted to the corresponding facial regions of the target.

In contrast to approaches that use the global code, another
branch of research aims to retarget facial expression by utilizing
local deformations [BBW14; CCGB22; CZ24; JTDP06; MFD11;
NVW*13; RSJ*21; TDM11; WBZB20; WBGB16]. While the de-
tails of these methods vary, their common idea is to divide the face
into multiple regions and transfer the deformation occurring in each
region individually. This allows for a higher expressibility of local
facial details than the global approaches mentioned above. Because
the local deformation methods typically define local regions based
on the learned mesh data, their applicability is constrained to a face
mesh with the same mesh structure. Additionally, handling local
deformations individually often makes it hard to intuitively control
the overall facial expression.

In this paper, we propose a method to utilize the advantages of
both global and local approaches. The key idea of our approach is
illustrated in Figure 2. Our method localizes a global expression
code for each vertex based on target mesh geometry. Then the lo-
cal deformation is predicted using the localized expression code to
produce a deformed mesh. We employ a skinning encoder that pre-
dicts the per-vertex skinning weight from the target face mesh to
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Figure 2: Brief illustration of the key idea. Our method localizes
the influence of global expression on the local regions in the tar-
get identity mesh by utilizing per-vertex skinning weights, enabling
precise expression cloning on the local region.

localize the global expression code. The skinning weight is then
processed with the global expression code to produce a localized
expression code for each vertex of the target face mesh. This en-
ables our method to accurately reflect the local geometry of the
target face mesh, resulting in precise and realistic retargeting of the
source expression, even for meshes with facial proportions that dif-
fer from the training data.

In addition to accurate retargeting, the ability to manipulate fa-
cial expressions is very crucial. In most deep learning-based meth-
ods, the global code is not interpretable, making direct editing of
the results challenging. Because it is not feasible for users to manip-
ulate each vertex of the mesh directly to achieve desired outcomes,
further editing becomes practical only when the generated mesh
is mapped to a controllable format, such as a user-friendly rig or
blendshapes, through an inverse processing procedure [VATT22].
To tackle this, we construct the expression code based on the Fa-
cial Action Coding System (FACS) [EF78]. This allows our method
to be interpretable, facilitating manipulation and adjustment of the
generated output. The experiments demonstrate that our approach
effectively allows for expression cloning and follow-up manipula-
tion while accurately reflecting the local geometry information of
the target face mesh. We show that our method outperforms the
baseline methods on the quality of retargeting and inverse rigging.
Furthermore, our method performs robustly even on face meshes
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with different proportions from those of the meshes used as the
training data.

2. Related Work

A parametric model is a commonly used method to control face
meshes, offering a simple and effective way to represent facial ex-
pressions with a small number of parameters [Par91]. There are
various types of parametric facial models, such as blendshape and
3D Morphable Models (3DMM). 3DMM is often constructed from
the captured data with PCA, producing a linear model with an or-
thogonal basis [BV99; CK06; LBB*17; PKA*09; VBPP06]. Be-
cause the orthogonality of the basis does not guarantee to match the
shape semantic of the facial expression, the interpretability is low
and it is hard for users to edit the model. The blendshape is also a
linear model that provides a semantic basis where each basis cor-
responds to an individual facial expression [LAR*14]. The type of
blendshape varies depending on the blending target. When the en-
tire face shape is linearly blended [Par72; Par91], it is referred to as
a whole-face blendshape. In the case of delta blendshape [Ber87],
the offset for the expressive face is blended linearly with the neu-
tral face. While these two types of blendshape handle the expres-
sion globally upon the entire face, local blendshape [Kle89] divides
the face into several regions, blending each segmented face region
individually to produce a wider range of expressions. We recom-
mend the survey works of Lewis and Anjyo [LAR*14] and Egger et
al. [EST*20] for a further detailed review of the relevant research.

Because a parametric model is defined based on the mesh struc-
ture, they are bound to a specific face mesh. A simple way to
solve this is to establish correspondences between source and tar-
get meshes and transfer per-vertex displacements [NN01] or de-
formation gradients [SP04]. These approaches were later improved
by utilizing Radial Basis Functions [BBA*07; OZS08; RZL*17],
retargeting motion in the velocity domain [SLS*12], or leverag-
ing segments for local retargeting [LMC*11]. These methods can
be easily applied to the blendshape that handles the face globally.
However, it is not clear how to extend these approaches to handle
local blendshapes as they require defining local segments in addi-
tion to fitting a global shape.

The emergence of deep learning has significantly expanded
the possibilities for facial model parameterization. This has
been achieved by encoding mesh deformation into latent space
using various network architectures. These architectures in-
clude Multi-Layer Perceptrons [AGK*22; GFK*18; TGLX18;
QSA*23; WLL*23], 2D Convolutional Networks [BWS*18],
Graph Convolutional Networks (GCN) [BBP*19; GYQ*18;
HHF*19; RBSB18], and Transformers [CZG*22]. These studies
can be broadly categorized into two main types: global approaches
and local approaches.

Early studies of the global approach represent the deformation
of a mesh using a single global code. Ranjan et al. [RBSB18]
use GCN to learn the global latent representation of facial expres-
sions. Bouritsas et al. [BBP*19] further improved this by employ-
ing a spiral convolutional network, a variant of GCN. Groueix et
al. [GFK*18] utilize a template mesh along with the global shape
code which encapsulates the deformation. Tan et al. [TGLX18] use

variational autoencoders to learn a latent space for the deforma-
tion. Gao et al. [GYQ*18] employed a GAN-based model with a
cyclic loss to learn the global latent representation for mesh de-
formation using unpaired data, enabling deformation transfer to a
target mesh. Some approaches [CBGB20; JWCZ19] separate the
global code into identity and expression components. This helped
the model to disentangle the information, improving the quality of
expression retargeting. Recent methods enable the retargeting on
face meshes with arbitrary structures via learning the field of local
deformation, such as per-triangle Jacobian [AGK*22] or per-vertex
displacement [CZG*22; WLL*23]. Qin et al. [QSA*23] further im-
proved this by constructing the global code based on FACS, provid-
ing easy control for creating and editing facial expressions. Build-
ing on these approaches, we localize the influence of the global
code to improve retargeting accuracy while enabling intuitive con-
trol.

The local approach utilizes a local model to improve express-
ibility by discarding undesired spatial correlation biases [BBW14;
WBZB20; CCGB22; CZ24]. Brunton et al. [BBW14] utilize mul-
tilinear models based on wavelet coefficients to effectively capture
local details of facial expressions. However, these models some-
times produce an unnatural expression as a whole. To address this,
Bagautdinov et al. [BWS*18] utilize a 2D CNN to capture both
global and local deformations by projecting the mesh deformation
into the UV space. Wang et al. [WBZB20] utilize the global and
local multilinear models simultaneously, to produce natural expres-
sion as a whole. While the details of these methods vary, their com-
mon idea is to divide the face into multiple regions and retarget the
deformation in each region individually.

The strengths and weaknesses of both global and local ap-
proaches often involve a trade-off between intuitive control and
preservation of local details. We aim to mitigate the limitations of
each approach while leveraging their advantages. Our method pre-
dicts the local influence of the global expression code on the target
mesh through skinning weights. This enables expression cloning in
localized regions of the face, combining the benefits of both global
and local methods for natural and precise retargeting. To obtain ap-
propriate skinning weights for any mesh structure, we use segmen-
tation labels as indirect supervision during network training. Fol-
lowing Qin et al. [QSA*23], we guide the global expression code
to function as FACS-based blendshape weights, allowing users to
intuitively edit facial expressions.

3. Method

In this section, we present the flow of our method, along with the
network architecture and training strategy. As shown in Figure 3
(a), our approach allows for retargeting expressions from a given
source face mesh to a neutral target mesh, as well as animating
based on user-provided blendshape weights. In the retargeting set-
ting, our model takes the source expression mesh Msrc and the tar-
get neutral mesh Mtgt as inputs. For animation using blendshapes,
the model uses the blendshape weight Wsrc and the target neutral
mesh Mtgt as inputs. In both cases, the output is the displacement
∆vtgt for each vertex of Mtgt , which is added to the original vertex
positions of Mtgt to produce the deformed mesh.
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Figure 3: Method overview. Illustration of the data flow at inference (a) and training (b). For simplicity, the encoders are omitted from (b)
and the dotted red box indicates the losses that are exclusively applied to the ICT data.

3.1. Architecture

Our method utilizes three encoders and one decoder. The three
encoders are the identity encoder, expression encoder, and skin-
ning encoder. The identity encoder encodes identity information
from Mtgt into a global identity code zID ∈ R128, while the ex-
pression encoder encodes facial expression information from Msrc
into global expression code zGE ∈ R128. The skinning encoder ini-
tially predicts the skinning feature zSkin ∈ RL for each vertex of
Mtgt where L represents the number of segmentation labels. Given
zSkin and zGE , the skinning block outputs the localized expression
code zLE ∈ R128.

All encoders contain a CNN and DiffusionNet [SACO22], fol-
lowing the approach of Qin et al. [QSA*23]. The skinning encoder
additionally has a skinning block, which consists of simple MLP.
When the input mesh Min is fed into the encoders, the face mesh is
first rendered from a frontal view, and the CNN extracts the image
feature cin. This feature cin ∈ R128 is concatenated with the vertex
feature vin ∈ R6 of Min and passed into DiffusionNet. We use cin
to enhance the network’s robustness to alignment differences be-
tween a given face mesh and a learned face mesh, as noted in Qin et
al. [QSA*23]. The vertex feature is the concatenation of the vertex
position and the vertex normal. While all three encoders share the
same input representation, they differ in how the DiffusionNet out-
put is processed. For the identity and expression encoders, the out-
puts from all vertices are averaged to produce a single global code.
In contrast, the skinning encoder’s output is used directly without
averaging as shown in Figure 4 (a).

The MLP in the skinning block takes zSkin as input and outputs
skinning weights ωSkin ∈ R128 where 128 represents the number
of blendshapes. By applying the Hadamard product to ωSkin and
zGE the localized expression code zLE ∈ R128 associated with each
vertex is produced. The decoder consists of an eight-layer MLP,
where the output of each layer, except for the final one, is followed
by group normalization and ReLU activation. The decoder takes the
concatenation of vtgt , ctgt , zID and zLE as input and outputs the per-
vertex displacement ∆vtgt as shown in Figure 4 (b). This displace-
ment is then added to the vertex positions of Mtgt to produce the
deformed mesh. The decoder processes each vertex independently

and supports batch processing, allowing it to handle all vertices in
a mesh at once without being influenced by neighboring vertices.

3.2. Dataset

For the training data, we utilized the ICT-Facekit [LBZ*20] (ICT),
a FACS-based parametric face model. ICT provides identity and ex-
pression blendshapes, which we used to supervise both the identity
and expression encoders. Specifically, we ensured that the global
expression code, zGE , mimics the ICT expression blendshape coef-
ficients, allowing for an interpretable global code that facilitates in-
tuitive facial expression manipulation. The ICT blendshape is based
on a delta blendshape formulation as follows:
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where vi
0 ∈R3, vi

j ∈R3, and vi
k ∈R3 are the i-th vertex of ‘neutral’

face, j-th identity blendshape, and k-th expression blendshape, re-
spectively. w j and wk are the corresponding coefficients for identity
blendshape and expression blendshape, respectively. J represents
the number of identity blendshapes and K represents the number of
expressions which are 100 and 53 in ICT, respectively.

We generated synthetic data by randomly sampling expression
coefficients wk from a uniform distribution. Additionally, we used
data where expression coefficients were sampled in a one-hot man-
ner to ensure that the model could fully learn extreme expressions
represented by individual blendshapes. We sampled 111 identity
coefficients w j from the normal distribution to generate a variety of
identities in the dataset. Specifically, the 100 identity coefficients
publicly released by Qin et al. [QSA*23] were used for training,
and 10 identities were sampled for testing and 1 identity was sam-
pled for validation.

In addition to the synthetic data, we incorporated the Multi-
face [WZA*22] dataset for further training. Multiface is a dataset
created by capturing the range of motion (ROM) for 13 different
identities. We split the identities as 8 : 1 : 1 each for training, val-
idation, and testing, following Qin et al. [QSA*23]. This real scan
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Figure 4: Illustration of the encoder (a) and decoder (b) architec-
tures. S.B. indicates the skinning block.

data helps the model learn realistic facial expressions and move-
ments that are difficult to capture using ICT blendshapes alone. We
split the training, validation, and test sets based on identity for both
Multiface and ICT to ensure diverse learning. Additionally, all face
meshes used in training were standardized by removing the eye-
balls and mouth sockets, and the precomputed features were calcu-
lated after this standardization process.

3.3. Skinning prediction

A key aspect of our method is predicting the skinning weights
that capture the relationship between facial regions and the
global expression code. Skinning, typically used in joint-based
mesh deformation, determines how a joint’s movement affects the
mesh’s vertices. A well-known example is Linear Blend Skinning
(LBS) [MLT88], where the influence of each joint is usually limited
to a local region instead of affecting the entire mesh. Inspired by
this, we propose a method that localizes the global expression code
through skinning weights, resulting in accurate region-specific de-
formations.

Unlike joint-based methods, blendshape face models do not uti-
lize pre-defined skinning weights. To address this, we propose a
strategy where the skinning encoder implicitly learns to predict
skinning weights for the given mesh using supervision from seg-
mentation labels. This enables our method to localize the influence
of zGE on different facial regions, resulting in accurate and expres-
sive deformations. To supervise the skinning encoder using seg-
mentation labels, we created a segmentation map that divides the
face into several regions based on the facial muscle group [Win15].
We then apply a negative log-likelihood loss to the output of the
skinning encoder as follows:

Lnll =− 1
N

N

∑
i=1

(
yi log(zi

Skin)+(1− yi) log(1− zi
Skin)

)
(2)

where N denotes the total number of vertices, and y represents the
ground truth labels.

We do not force zSkin to take a strict one-hot form, allowing for
some degrees of spatial correlation to remain during training. In
other words, rather than limiting each vertex to belong exclusively
to a single region, the model allows for a soft association between

a  Blendshapes

b  Deformed region

Figure 5: Overlaping regions between blendshape. The ICT blend-
shapes for ‘EyeSquintRight’, ‘EyeBlinkRight’, ‘EyeLookUpRight’,
and ‘BrowOuterUpRight’ (a) and the corresponding deformed re-
gion (b).

vertex and multiple regions. As a result, our method is capable of
handling both global and local deformations.

As shown in Figure 5, the areas influenced by different blend-
shapes often overlap, even when the semantics of the movements
differ. More cases can be found in the supplementary material.
Therefore, after segmenting the face into regions, we trained the
network to map these regions to skinning weights, by implicitly
learning the correlation between the blendshape movements and the
facial region. The effectiveness of this approach is demonstrated in
Section 4.1.

Indirect supervision using segmentation aims to regularize the
skinning encoder by ensuring consistent skinning weights for cor-
responding face regions across different face shapes. While the en-
coder can converge without this supervision, the estimated weights
may lack the desired consistency. Additionally, without supervi-
sion, the encoder showed reduced generalization to unseen meshes
as shown in Figure 10. Supervising only a subset of the training
data proved sufficient for the network to learn facial semantics and
generalize to diverse face shapes and structures. For related results,
please refer to the supplementary material.

3.4. Loss function

In the training process, we use several loss functions: decoder loss,
encoder loss, negative log-likelihood loss based on segmentation,
and losses based on ICT blendshapes. The decoder loss is based on
the L2 loss between the predicted deformed mesh and the ground
truth mesh, comprising vertex loss (Lv = ||v − vGT ||2), Jacobian
loss (Lg = ||g−gGT ||2), and normal loss (Ln = ||n−nGT ||2), where
v, g, and n represent the vertex position, deformation Jacobian, and
vertex normal of the predicted mesh, respectively. Subscript GT
refers to the ground truth. The loss can be expressed as follows:

Ldec = λvLv +λnLn +λgLg (3)

where λv, λn and λg are set to 10, 1, and 1, respectively.

The encoder loss calculates the L2 loss between the encoder pre-
dictions and the ground truth ICT blendshape coefficients. ICT pro-
vides identity blendshapes with 100 bases and expression blend-
shapes with 53 bases. Because both zID and zGE are represented as
128-dimensional vectors, the extra dimensions beyond these blend-
shape bases are regularized to approach to zero. The losses for the
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identity and expression encoders are defined as follows:

LID = ||zid
ID − zid

GT ||
2 + ||zext

ID ||2,

LExp = ||zexp
GE − zexp

GT ||
2 + ||zext

GE ||
2.

(4)

where id and exp refers to the identity and expression blendshape
dimensions, respectively, and ext refers to the extra dimensions.

For non-ICT data, we apply a regularization loss (Lreg) as pro-
posed in NFR [QSA*23]. This regularization loss ensures that the
predicted parameters remain within the range [0, 1], and it is de-
fined as follows:

Lreg =


−z, z < 0
0, 0 ≤ z ≤ 1
z−1. z > 1

(5)

where z represents both the expression and identity codes.

Summarizing the loss based on the training data yields the fol-
lowing:

Lenc =

{
LExp +LID, if ICT
Lreg. else

(6)

In addition to the encoder loss, we introduce two additional
losses based on the ICT blendshape (LBP, LBR) to align the latent
code from the expression encoder with the blendshape coefficients
and guide the decoder to behave similarly to the ICT blendshape
basis. These losses are applied exclusively when the training data
is obtained from ICT. Considering the vertex as an end-effector of
the blendshape system, applying the losses to minimize its devi-
ation helps the network better align with the blendshape system
compared to using only an encoder loss. Table 4 and Table 5 show
that the blendshape-based losses improve the quality of both the
expression encoder and decoder outputs.

The blendshape projection loss (LBP) minimizes the L2 distance
between the expression face reconstructed by multiplying zGE with
the ICT blendshape basis and the expression mesh generated by
multiplying the ground truth ICT blendshape coefficients with the
same basis. This encourages the prediction of the expression en-
coder to behave like ICT blendshapes.

LBP = ||z1:53
GE ·B− zGT ·B||2 (7)

where B represents the ICT blendshape basis.

The blendshape reconstruction loss (LBR) minimizes the L2 dis-
tance between the expression face generated by the ICT blendshape
and the predicted expression mesh from the decoder. The first 53
dimensions of zGE are multiplied by B to generate an expression
mesh, while the decoder uses the entire zGE to produce its output.
This loss ensures that the decoder learns to behave similarly to the
ICT blendshape basis.

LBR = ||sg(z1:53
GE ) ·B−D(Ψ(sg(zGE),zSkin))||2 (8)

where sg represents the stop-gradient operation, Ψ represents the
skinning block, and D is the decoder. For simplicity, additional in-
puts to the decoder are omitted from the equation. We apply the
stop-gradient operation to zGE to prevent the gradient from propa-
gating back to the expression encoder, ensuring that the loss affects
only the decoder.

The negative log-likelihood loss in Equation 2 is applied only
when the mesh in the training data corresponds to ICT. For other
meshes, the training process converges towards minimizing the re-
maining losses. The overall loss is defined as follows:

Ltotal =

{
Ldec +Lenc +LBP +LBR +Lnll , if ICT
Ldec +Lenc. else

(9)

4. Experiments

In this section, we outline the experiments carried out to evaluate
the effectiveness of our method. To assess the expression fidelity of
our method, we compared the quality of facial expression retarget-
ing results with that of the results from Qin et al. (NFR)[QSA*23]
and Wang et al. (ZPT)[WLL*23], both of which handle deforma-
tion transfer based on global codes and can be applied to arbitrary
mesh structures. Although Chandran et al. [CZG*22] is also inde-
pendent of specific mesh structures, it does not use global codes.
Instead, the model directly predicts delta values of the vertex posi-
tions from the target and expression meshes, making it less suitable
for tasks that require editable or controllable facial movements.
Therefore, we focused on methods that offer flexibility in control
for comparison. We trained all models with ICT and Multiface data
for fair comparison. For ZPT, which requires corresponding pose
codes for a deformed mesh, we used ICT blendshape coefficients
as the pose codes for ICT meshes. For Multiface which does not
provide ICT blendshape coefficients for each expression face mesh,
we used the predictions from our pre-trained expression encoder as
pseudo ground truth, which were then used to train ZPT.

Our study builds upon several aspects of the experimental setup
used by NFR, except for the proposed skinning encoder and
blendshape-based loss functions (LBP, LBR). By keeping these el-
ements consistent, we were able to isolate and clearly assess the
impact of our proposed changes. Additionally, we conducted an ab-
lation study to validate the effectiveness of our design choices. Fur-
ther details on the implementation and the learned deformations for
each expression code dimension can be found in the supplementary
material.

4.1. Expression quality

To evaluate the expression quality, we conducted a self-retargeting
task in which the model retargets a face mesh with an expression
to the same mesh in a neutral expression. We measured the Mean
Squared Error (MSE) between the ground truth face mesh and the
reconstructed face mesh vertices to quantify the expression qual-
ity. For a fair comparison with ZPT, we followed the optimization
and test-time training settings outlined in the paper for each iden-
tity face mesh in the test data. In case of NFR, the mesh’s global
mean often shifted or the mesh scale often changed when solving
the Poisson equation. To account for this, we aligned the recon-
structed mesh with the ground truth using Procrustes analysis be-
fore calculating MSE. This minimized errors caused by shifting
and ensured that the MSE focused on the deformation errors. The
results are shown in Table 2 and Figure 6 visualize the quantitative
errors.

NFR caused subtle but unintended deformations in the mesh,
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GT Ours

(a) ICT

ZPT

(b) Multiface

NFR GT Ours ZPTNFR

Figure 6: Visual comparison of expression quality produced by our method and comparative methods. The MSE between the GT and the
predicted face mesh is colored using a yellow-orange-red color map (YlOrRd).

Source Ours
(a) ICT

ZPT
(b) Multiface

NFR Source Ours ZPTNFR

Figure 7: Visual comparison of inverse rigging quality produced by our method and comparative methods. The expression codes were
predicted from the source face mesh and were used to reconstruct a face mesh using the ICT blendshape. The incurred deformation on the
face is colored using a yellow-orange-red color map (YlOrRd).

such as slight thinning or thickening of the overall volume, in addi-
tion to the shifting artifact. ZPT produced artifacts in regions with
conflicting movements, such as when the mouth opens or the eyes
blink. In contrast, our method did not produce any of these artifacts
and outperformed the comparative approaches.

The ICT face model includes the full head and part of the torso,
leaving relatively few vertices responsible for facial movements.
Because regions like the neck and clavicle remain mostly static
even when the mouth and eyes move, calculating MSE across the
entire mesh can bias the error toward these static regions and under-

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



8 of 12 Cha et al. / Neural Face Skinning for Mesh-agnostic Facial Expression Cloning

Table 1: Quantitative comparison of expression quality on each face segment produced by our method and comparative methods.

Method
MSE ↓ (×10−4mm)

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 Avg

ZPT 0.533 0.389 2.079 2.059 0.137 0.134 0.125 1.421 1.409 1.425 1.535 1.649 10.942 233.510 5.744 0.040 1.197 0.246 0.211 0.072 13.219
NFR 4.389 3.233 2.545 2.218 2.893 2.075 2.226 1.639 2.298 3.218 2.613 2.853 4.584 5.657 5.106 4.272 3.913 2.468 2.869 5.861 3.346
Ours 0.387 1.230 1.361 1.263 1.436 0.654 0.558 1.578 3.330 2.483 2.021 2.037 5.410 6.055 3.999 0.204 0.964 0.378 0.409 0.341 1.805

backhead 01

forehead 02

eye_left 03

temporalis_left 06

nose 08

levator_labii_left 10

masseter_left 12

orbicularis_oris 13

back_neck 16

ear_left 18

04 eye_right

05 procerus

07 temporalis_right

09 levator_labii_right

11 masseter_right

14 lips

15 jaw

17 platysma

19 ear_right

20 clavicle

side view

back view front view

Figure 8: Segment label. Visualization of 20 segments on the ICT
model and their corresponding label.

a b c d

Figure 9: Segment variation. Visualization of various segments
used for the training (a) 6 segments, (b) 14 segments (c) 20 seg-
ments, and (d) 24 segments.

estimate errors in regions with facial movement. To address this, we
calculated the MSE for each predefined face segment and averaged
these values for the overall error. The face segment is illustrated
in Figure 8, and the MSE for each segment, along with the overall
average, is presented in Table 1.

While ZPT produced the lowest error in static regions (e.g.,
16: backneck, 20: clavicle), however, it produced the highest er-
ror in dynamic regions (e.g., 14: lips, 15: orbicularis oris). In con-
trast, NFR produced relatively consistent errors across both static
and dynamic regions. Our method performed similarly to ZPT in
static regions while matching NFR’s accuracy in dynamic regions.
This suggests that our model accurately captures movements where
needed and minimizes unnecessary deformation in static areas.
Consequently, our method achieved the lowest overall error com-
puted by averaging the segment-based MSE values.

4.2. Inverse rigging

To validate if our constructed expression code conforms to the
grammar of the FACS-based ICT blendshape model, we conducted
experiments on inverse rigging. Inverse rigging aims to estimate
the optimal rig parameters that deform a mesh to the shape of the

Table 2: Quantitative comparison of expression quality produced
by our method and comparative methods. The best score is indi-
cated in bold.

Method
MSE ↓ (×10−4mm)

ICT Multiface
NFR 0.3514 5.2257
ZPT 2.3327 6.6935
Ours 0.2480 4.2856

desired geometry. To measure the accuracy of inverse rigging, the
expression codes were predicted from the source face mesh with
expressions and applied to the ICT blendshape bases. The MSE
between the reconstructed face mesh and the source face mesh
was then computed. We only used the ICT data for the quantita-
tive comparison as Multiface does not use a blendshape represen-
tation. Because ZPT does not directly predict the expression code,
we obtained it through an optimization process by minimizing the
error between the deformed output mesh and the source mesh while
keeping the model parameters fixed. Table 3 shows that our method
outperformed the comparative approaches.

Figure 7 shows a visual comparison of our results with those
produced from comparative methods for both ICT and Multiface.
NFR performed poorly on Multiface, sometimes producing move-
ments not present in the source. For example, in the first and the
third rows of Figure 7 (b), the source face has an expression of
mouth moving to the left and squinting, respectively. However, the
inverse rigging results produced by NFR added unintended expres-
sions, such as eyes being closed. This indicates that some expres-
sions are entangled in the expression code produced by the NFR’s
encoder. In contrast, the results from our method accurately cap-
tured the semantics of the expression without the entanglement of
the unintended expressions. This demonstrates the effectiveness of
our approach in encoding the facial expressions precisely.

Table 3: Quantitative comparison of inverse rigging quality pro-
duced by our method and comparative methods. The best score is
indicated in bold.

Method MSE ↓ (×10−4mm)

NFR 0.5029 ± 0.3587
ZPT 0.8909 ± 1.3278
Ours 0.2532 ± 0.3702

4.3. Ablation study

We conducted an ablation study to demonstrate the effectiveness of
our design choices by changing the network architecture. Four sce-
narios are explored: (1) without the skinning encoder, (2) without

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Cha et al. / Neural Face Skinning for Mesh-agnostic Facial Expression Cloning 9 of 12

the blendshape projection loss (LBP), (3) without the blendshape re-
construction loss (LBR), and (4) the full model. For the case of (1),
the configuration is mostly identical to those from NFR except for
the output representation of the decoder, which is per-vertex dis-
placement instead of per-triangle Jacobian. As the skinning block
produces the localized expression code given the global code and
per-vertex skinning feature, we did not experiment with the case
of using the skinning block alone without the skinning encoder.
The models were trained using the ICT and Multiface datasets, and
MSE between the ground truth and the generated vertices was mea-
sured to evaluate the expression quality. The results are shown in
Table 4 and Table 5.

The addition of the skinning encoder significantly improved the
performance across all the data and the addition of the skinning
block further enhanced the performance on the Multiface data. This
indicates that the localized expression code helps the network to
find the correlation between the local deformation and the global
code. The combined use of LBP and LBR improved expression qual-
ity and led to accurate and stable inverse rigging performance,
demonstrating the critical role that these losses play in refining the
network’s overall ability to replicate facial expressions.

Table 4: Ablation study that measures the expression quality. The
skinning encoder is denoted as ‘SE’ and the best score is indicated
in bold.

Method
MSE ↓ (×10−4mm)

ICT Multiface
w/o SE. 0.4663 4.9857
w/o LBP 0.3771 4.8341
w/o LBR 0.3462 4.5337
Full model 0.2480 4.2856

Table 5: Ablation study that measures the inverse rigging qual-
ity. The skinning encoder is denoted as ‘SE’ and the best score is
indicated in bold.

Segments MSE ↓ (×10−4mm)

w/o SE. 0.4081 ± 0.4776
w/o LBP 0.3064 ± 0.4064
w/o LBR 0.3061 ± 0.4055
Full model 0.2532 ± 0.3702

4.4. Segmetation variations

We created a segmentation map based on the ICT model, draw-
ing from facial muscle groups [Win15]. To determine the optimal
number of segments, we experimented with several configurations.
Specifically, we created four variations with segment counts of 6,
14, 20, and 24, as illustrated in Figure 9 and trained our model. The
results for expression quality and inverse rigging quality are pre-
sented in Table 6 and Table 7, respectively. For the inverse rigging,
we predicted the global expression code from the given ICT mesh
and applied it to the basis of the ICT blendshape to reconstruct the
face mesh and computed MSE with the ground truth.

Table 6: Expression quality with segment variation. The quality of
expression measured from the model trained with various numbers
of segmentations.

Segments
MSE ↓ (×10−4mm)

ICT Multiface
6 0.2538 4.0004

14 0.2623 4.6797
20 0.2480 4.2856
24 0.2545 3.9126

Table 7: Inverse rigging quality with segment variation. The in-
verse rigging results from the model trained with various numbers
of segmentations.

Segments MSE ↓ (×10−4mm)

6 0.2661 ± 0.3894
14 0.2637 ± 0.3854
20 0.2532 ± 0.3702
24 0.2835 ± 0.3276

The expression quality across the models trained with each seg-
ment variation showed no significant differences. However, the
model trained with 20 segments produced the best results in the
inverse rigging task. Because our goal is not only to achieve good
retargeting quality but also to develop a global expression code that
allows for intuitive editing and manipulation, we selected the model
trained with 20 segments as our final model.

4.5. Expression cloning on stylized face mesh

In addition to ICT and Multiface, we performed an experiment
using stylized face meshes, which deviate significantly from real-
istic human faces. We used Mery (©meryproject.com), Malcolm
(©2023 AnimSchool), Bonnie (©joshsobelrigs.com) and Morphy
(©joshburton.com) which were unseen during the training. Be-
cause the direct comparison of MSE between the source and tar-
get meshes is not feasible due to their different structures, we in-
stead highlighted the incurred deformation of the target mesh from
its neural expression using the MSE values. The results are shown
in Figure 10. Artifacts are evidently created by NFR, such as the
shifted eyebrow positions and rescaled mesh as shown in the fourth
and ninth column. ZPT failed to clone the expressions for all ex-
amples. Our method accurately retargeted the source expressions to
the stylized face meshes, demonstrating its versatility in handling
various face shapes. Additional details and visual examples of re-
targeting and editing can be found in the supplementary material.

5. Limitations

Although our method can effectively retarget facial expressions
across different face meshes, regardless of structure, it has a few
limitations. First, its editability is bound to the ICT blendshape
which cannot handle head pose and neck movement. Switching to a
foundational model like FLAME [LBB*17], which supports these
movements, could address this limitation. Another limitation arises
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Source
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Target
mesh
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Target
mesh
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Malcolm

Bonnie

Morphy

Figure 10: Visualization of expression cloning on stylized face meshes. Our method can animate arbitrary face meshes based on the ICT
blendshape coefficient. The similarity of the facial movement between the source expression and ours can be observed. The MSE is colored
using a yellow-orange-red color map (YlOrRd).

Source
Deformed

Target mesh
Target

Predicted
Skinning weight

Figure 11: The quality of expression cloning drops when the skin-
ning encoder predicts inaccurate skinning weights from the target
mesh. (©cgtrader)

from the skinning encoder because it sometimes struggles to pre-
dict accurate skinning weights on the face mesh when the scale of
the given mesh differs from the learned data as shown in Figure 11.
Furthermore, the method requires ground truth segments for train-
ing. Future work could explore unsupervised strategies for optimal
segment and skinning weight prediction to move toward a more au-
tomated approach. Additionally, although animation retargeting is
possible through per-frame expression cloning, jittering sometimes
occurred as shown in the supplementary video. Addressing this is-
sue could involve integrating a temporal module, which presents a
potential direction for future work.

6. Conclusion

In this paper, we introduced a novel approach for facial expres-
sion cloning that combines the strengths of global and local defor-
mation models. Our method localizes the influence of the global

expression codes to improve expression fidelity. By predicting lo-
cal deformation for each vertex of the target mesh, our method
can be applied to meshes with arbitrary structures. We introduced
blendshape-based losses to guide our model to ensure alignment
with the FACS-based blendshape which provides intuitive control
over facial expressions. Throughout the experiments, we demon-
strated that our approach outperforms existing methods in terms of
facial expression fidelity and inverse rigging quality. Overall, our
work highlights the importance of integrating global and local de-
formation strategies for accurate and flexible facial expression re-
targeting.
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